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ABSTRACT 

Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies 

derived Dietary Reference Values for calcium. These include Average Requirement (AR), Population Reference 

Intake (PRI) and Adequate Intake (AI). For adults, data were analysed from a number of balance studies 

undertaken in North America and the mean value at which calcium intake equals excretion was calculated as 

715 mg/day in adults ≥ 25 years. An allowance for dermal calcium losses (not included in the balance data) of 

40 mg/day was added to derive an AR of 750 mg/day. The upper bound of the 95 % prediction interval at the 

estimated population mean at null balance (which represents the 97.5
th

 percentile of the distribution of the 

individual predictions for each calcium intake level) was 904 mg/day, and when dermal losses are added this 

gives a PRI of 950 mg/day for adults ≥ 25 years. For infants (7–11 months), an AI was derived by extrapolating 

the average amount of calcium absorbed by exclusively breast-fed infants (120 mg/day) using isometric scaling 

and assuming an absorption of 60 %, and was calculated as 280 mg/day. The AR for children was derived using 

the factorial approach. The total quantity of calcium required for bone accretion and replacement of endogenous 

losses was adjusted for percentage absorption to derive PRIs for children aged 1–3, 4–10 and 11–17 years of 

450, 800 and 1 150 mg/day, respectively. The PRI for young adults (18–24 years), who still accumulate calcium 

in bones, is 1 000 mg/day. This is the intermediate value between children aged 11–17 years and adults. Taking 

into consideration adaptive changes in calcium metabolism that occur during pregnancy and lactation, the PRI 

for non-pregnant women also applies to pregnant and lactating women of the same age group. 
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SUMMARY 

Following a request from the European Commission, the European Food Safety Authority (EFSA) 

Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver a scientific opinion on 

Dietary Reference Values (DRVs) for the European population, including calcium. These include 

Average Requirement (AR), Population Reference Intake (PRI) and Adequate Intake (AI). 

Calcium is an integral component of the skeleton; approximately 99 % of total body calcium is found 

in bones and teeth as calcium hydroxyapatite, where it has a structural role. The remaining 1 % of 

calcium found in the body acts as an essential intracellular messenger in cells and tissues. 

Intestinal calcium absorption occurs through both an active, saturable, transcellular process and a non-

saturable, passive process. Active transport is controlled by 1,25(OH)2D and passive transport is 

paracellular. Calcium absorption varies considerably throughout the lifespan, being higher during 

periods of rapid growth and lower in old age. Calcium absorption is affected by vitamin D status; it 

has been shown to be low in patients with vitamin D deficiency, but there is uncertainty about the 

serum concentration of 25(OH)D that is required for optimal calcium absorption. Unabsorbed dietary 

calcium is lost in the faeces. The main routes of obligatory (endogenous) calcium loss are urine, 

faeces, and skin and sweat (dermal losses). 

If the dietary supply of calcium is insufficient to meet physiological requirements, calcium is resorbed 

from the skeleton to maintain blood concentrations within the range required for normal cellular and 

tissue functions. This causes a reduction in bone mass, which leads to osteopenia and osteoporosis, 

and an associated increased risk of fracture. 

Hypercalcaemia, defined by serum calcium concentrations > 2.75 mmol/L (11 mg/dL), is unlikely to 

occur with high intake of calcium from the diet alone but can be caused by high-dose calcium 

supplements, especially when accompanied by vitamin D supplements, as these can increase calcium 

absorption. 

The main dietary sources of calcium in European countries differ, although dairy products are 

generally the most important food group. Rich food sources of calcium include dairy products, dark 

green vegetables, legumes, nuts, fish with soft bones (e.g. canned sardines) and calcium-fortified 

foods. Hard water also makes a significant contribution to calcium intake. 

Evidence from human studies on the relationship between calcium intake and various health outcomes 

was reviewed and found to be inconsistent. It was not possible to use measures of bone health for 

deriving calcium requirements. A variety of endpoints are used to assess the effect of calcium intake 

on bone health, depending on the population group of interest, including skeletal growth, bone mineral 

density and fracture rates. However, as genotype, weight-bearing exercise and vitamin D status are 

important determinants of bone health, they may act as confounders in calcium dose–response studies. 

The Panel concluded that measures of bone health (skeletal growth, bone mineral density and 

fractures) could not be used to derive DRVs for calcium. Similarly, evidence related to cardiovascular 

outcomes and cancer was not helpful for deriving DRVs for calcium. 

Calcium balance data collected from a number of carefully controlled metabolic studies undertaken in 

North American adults aged 25 years and over were analysed to determine the value at which calcium 

intake equals calcium losses via urine and faeces. The mean value at which calcium intake equals 

excretion is 715 mg/day. An allowance for dermal losses of calcium, which were not included in the 

balance data, of 40 mg/day was added to derive an AR of 750 mg/day. The upper bound of the 95 % 

prediction interval at the estimated population mean at null balance (which represents the 97.5
th
 

percentile of the distribution of the individual predictions for each level of calcium intake) was 

904 mg/day, and when dermal losses are added this gives a PRI of 950 mg/day. 
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In infants aged 7–11 months, an AI was derived by estimating the average amount of calcium 

absorbed by exclusively breast-fed infants (120 mg/day) and extrapolating upwards using isometric 

scaling. Assuming an absorption of 60 %, the AI is 280 mg/day. 

In children aged 1–17 years, a factorial approach was employed where the quantity of dietary calcium 

that is sufficient for calcium accretion in bone and for replacement of obligatory body losses in 50 % 

of the population was the criterion upon which the AR is based. ARs for children aged 1–3, 4–10 and 

11–17 years are 390, 680 and 960 mg/day, respectively. Assuming a coefficient of variation (CV) of 

10 %, the PRIs for children aged 1–3, 4–10 and 11–17 years are 450, 800 and 1 150 mg/day, 

respectively. 

The AR for young adults (18–24 years), who still accumulate calcium in bones, is 860 mg/day. This is 

the intermediate value between children aged 11–17 years and adults. Assuming a CV of 10 %, the 

PRI is 1 000 mg/day. 

Taking into consideration adaptive changes in calcium metabolism that occur during pregnancy and 

lactation, the PRI for non-pregnant women also applies to pregnant and lactating women of the same 

age groups. 
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BACKGROUND AS PROVIDED BY THE EUROPEAN COMMISSION 

The scientific advice on nutrient intakes is important as the basis of Community action in the field of 

nutrition, for example such advice has in the past been used as the basis of nutrition labelling. The 

Scientific Committee for Food (SCF) report on nutrient and energy intakes for the European 

Community dates from 1993. There is a need to review and, if necessary, to update these earlier 

recommendations to ensure that the Community action in the area of nutrition is underpinned by the 

latest scientific advice. 

In 1993, the SCF adopted an opinion on the nutrient and energy intakes for the European Community.
4
 

The report provided Reference Intakes for energy, certain macronutrients and micronutrients, but it did 

not include certain substances of physiological importance, for example dietary fibre. 

Since then new scientific data have become available for some of the nutrients, and scientific advisory 

bodies in many European Union Member States and in the United States have reported on 

recommended dietary intakes. For a number of nutrients these newly established (national) 

recommendations differ from the reference intakes in the SCF (1993) report. Although there is 

considerable consensus between these newly derived (national) recommendations, differing opinions 

remain on some of the recommendations. Therefore, there is a need to review the existing EU 

Reference Intakes in the light of new scientific evidence, and taking into account the more recently 

reported national recommendations. There is also a need to include dietary components that were not 

covered in the SCF opinion of 1993, such as dietary fibre, and to consider whether it might be 

appropriate to establish reference intakes for other (essential) substances with a physiological effect. 

In this context, EFSA is requested to consider the existing Population Reference Intakes for energy, 

micro- and macronutrients and certain other dietary components, to review and complete the SCF 

recommendations, in the light of new evidence, and in addition advise on a Population Reference 

Intake for dietary fibre. 

For communication of nutrition and healthy eating messages to the public it is generally more 

appropriate to express recommendations for the intake of individual nutrients or substances in food-

based terms. In this context, EFSA is asked to provide assistance on the translation of nutrient based 

recommendations for a healthy diet into food based recommendations intended for the population as a 

whole. 

TERMS OF REFERENCE AS PROVIDED BY THE EUROPEAN COMMISSION 

In accordance with Article 29 (1)(a) and Article 31 of Regulation (EC) No. 178/2002,
5
 the 

Commission requests EFSA to review the existing advice of the Scientific Committee for Food on 

population reference intakes for energy, nutrients and other substances with a nutritional or 

physiological effect in the context of a balanced diet which, when part of an overall healthy lifestyle, 

contribute to good health through optimal nutrition. 

In the first instance, EFSA is asked to provide advice on energy, macronutrients and dietary fibre. 

Specifically advice is requested on the following dietary components: 

 Carbohydrates, including sugars; 

 Fats, including saturated fatty acids, polyunsaturated fatty acids and monounsaturated fatty 

acids, trans fatty acids; 

                                                      
4 Scientific Committee for Food, 1993. Nutrient and energy intakes for the European Community. Reports of the Scientific 

Committee for Food, 31st series. Food – Science and Technique, European Commission, Luxembourg, 248 pp. 
5 Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002 laying down the general 

principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in 

matters of food safety. OJ L 31, 1.2.2002, p. 1–24. 
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 Protein; 

 Dietary fibre. 

Following on from the first part of the task, EFSA is asked to advise on population reference intakes 

of micronutrients in the diet and, if considered appropriate, other essential substances with a 

nutritional or physiological effect in the context of a balanced diet which, when part of an overall 

healthy lifestyle, contribute to good health through optimal nutrition. 

Finally, EFSA is asked to provide guidance on the translation of nutrient based dietary advice into 

guidance, intended for the European population as a whole, on the contribution of different foods or 

categories of foods to an overall diet that would help to maintain good health through optimal nutrition 

(food-based dietary guidelines). 
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ASSESSMENT 

1. Introduction 

Calcium is an essential nutrient that must be provided by the diet. The adult body contains 

approximately 1 000 g of calcium, 99 % of which is found in the skeleton, where it has a structural 

role. The remaining 1 % is found in extracellular fluids, intracellular structures and cell membranes, 

where it is involved in vascular, neuromuscular and endocrine functions. 

In 1993, the Scientific Committee for Food (SCF) adopted an opinion on the nutrient and energy 

intakes for the European Community, in which Population Reference Intakes (PRIs) for calcium for all 

age groups from 6 months upwards were derived. For this, the factorial approach was used for children 

and adults, including lactating women, but such data were unavailable for infants. In addition, a 

Lowest Threshold Intake was proposed for adults. 

2. Definition/category 

2.1. Chemistry 

Calcium is the fifth most abundant element in the earth’s crust, sea water and the human body. It has 

an atomic mass of 40.08 Da, and it belongs to the group of the alkaline earth elements. Calcium has 

two mobile free electrons in the 4s orbital, and forms a stable divalent cation. There are six naturally 

occurring stable isotopes of calcium, the most abundant being 
40

Ca (96.97 % natural abundance). 

Calcium salts are generally water soluble, with the exception of calcium sulphate, carbonate and 

phosphates, which are soluble in acids. 

2.2. Functions of calcium 

2.2.1. Biochemical functions 

Calcium is an integral component of the skeleton; approximately 99 % of total body calcium is found 

in bones and teeth, where it is mainly present as calcium hydroxyapatite [Ca10(PO4)6(OH)2]. It has a 

structural role, and is needed for tissue rigidity, strength and elasticity. Bone is a reservoir for calcium 

and other inorganic nutrients, and participates in whole-body mineral homeostasis through the 

processes of bone formation and resorption. It is a dynamic tissue that is continuously remodelled 

throughout the life course under the control of osteocytes (Bonewald, 2011). Osteoblasts are 

responsible for the formation of new bone tissue and osteoclasts for bone resorption. In infants and 

children, the rate of formation exceeds that of resorption and new bone tissue is laid down as part of 

the process of growth, whereas in later life the rate of bone resorption exceeds formation, resulting in 

bone loss and microarchitectural changes that compromise bone strength and increase the risk of 

fracture. The rate of loss of bone is dependent on the combination of many environmental and lifestyle 

factors (Schulman et al., 2011), but menopausal status, use of hormone replacement therapy, genotype 

and frequency of load-bearing physical activity are of overriding importance (Ferrari, 2008; Riancho 

and Hernandez, 2012). A number of dietary constituents are associated with changes in calcium 

balance that can influence bone calcium content either positively (e.g. calcium, vitamin D, fruit and 

vegetables, vitamin K, moderate alcohol intake) or negatively (e.g. sodium, phytate, high alcohol 

intake) (Bonjour, 2011; Fairweather-Tait et al., 2011; Falcone et al., 2011; Anderson et al., 2012; 

Weaver et al., 2012; Welch et al., 2012); epigenetic factors have also been implicated (Holroyd et al., 

2012). 

The central core of long bones (the marrow cavity) is a major site for the development of 

haematopoietic cells and is one of the functional sites of the immune system. Some of the cells 

involved in bone remodelling originate from the bone marrow. Recent advances in bone cell biology 

and genetic studies have improved our understanding of the essential signalling pathways that control 

bone remodelling and bone mass, such as how parathyroid hormone (PTH), Wnt/Ca
2+

 signalling (SCF, 

2003) and growth factors may trigger anabolic effects in bone. Novel signalling pathways generated 
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by cell–matrix and cell–cell communications regulating bone remodelling have more recently been 

identified (Marie, 2012). 

The remaining 1 % of calcium found in the body acts as an essential intracellular messenger in cells 

and tissues. It has a critical role in many physiological functions involved in the regulation of 

metabolic processes, including vascular contraction and vasodilation, muscle contraction, enzyme 

activation, neural transmission, membrane transport, glandular secretion and hormone function. Owing 

to its ability to complex with anions such as citrate and bicarbonate, ionised calcium is the most 

common signal transduction element in the human body (IOM, 2011). 

2.2.2. Health consequences of deficiency and excess 

 Deficiency 2.2.2.1.

If the dietary supply of calcium is insufficient to meet physiological requirements, owing to low intake 

and/or inefficient gastrointestinal absorption, calcium is resorbed from the skeleton to maintain blood 

concentrations within the range required for normal cellular and tissue functions. This causes a 

reduction in bone mass, which leads to osteopenia (a lower than normal bone mineral density (BMD)) 

and osteoporosis, characterised by a very low BMD, and an associated increased risk of fracture. 

Skeletal disorders include rickets, osteomalacia (adult rickets), osteoporosis and fractures. Rickets and 

osteomalacia are associated with suboptimal bone mineralisation and are caused by vitamin D 

deficiency. However, the cut-off value for serum 25(OH)D concentration that is associated with a risk 

of rickets in children and other vitamin D-related skeletal disorders is uncertain. A low intake of 

calcium often co-exists with vitamin D deficiency and both can independently cause nutritional rickets 

(Abrams, 2010b). An inadequate supply of calcium for bone development leads to stunted growth and 

bowing of long bones. Older adults with osteomalacia will not present with deformed bones but will 

have a reduced bone mass which leads to impaired bone strength. 

Osteoporosis is a disorder associated with ageing, low BMD and a greater risk of fracture. Women are 

particularly at risk after the menopause when there is an accelerated loss of bone, but older men also 

experience age-related bone loss, although the higher risk of fracture occurs some 5 to 10 years later 

than in women (IOM, 2011). 

Bone loss is strongly related to genotype, with genetic factors reported to explain 44–56 % of the 

inter-individual variance in bone loss at femoral neck, lumbar spine and forearm in postmenopausal 

Caucasian women (Zhai et al., 2009). However, when the effects of all polymorphisms of genes 

identified through genome-wide association studies are combined, they explain less than 10 % of the 

variation in bone mass (Riancho and Hernandez, 2012). A shared genetic aetiology is often assumed 

between fracture and low BMD, but is not always the case. In 6 570 female twins, the prevalence of 

wrist fractures was 3.3 % and heritability was 54 % (Andrew et al., 2005). However, when forearm 

BMD was included as a covariate in models testing for a shared genetic aetiology between wrist 

fracture and BMD, the magnitude of the genetic influence on the risk of fracture was reduced very 

little, suggesting that many of the genes involved in wrist fracture are different from those involved in 

BMD. Another twin study found that clinical vertebral fractures were largely explained by 

environmental influences and not by genetic factors (Wagner et al., 2012). The authors concluded that 

individual-specific environmental influences such as lifestyle become more important with increasing 

age. 

The apparent calcium paradox, mostly derived from ecological studies, whereby countries or 

populations with lower calcium intakes also have a lower prevalence of osteoporosis, suggests that 

environmental factors other than calcium intake play a key role in preventing osteopenia, osteoporosis 

and bone fracture. The role of vitamin D in bone health is widely recognised, and there is evidence 

that a combination of calcium and weight-bearing exercise has a synergistic effect on bone mass (Daly 

et al., 2014). The Panel notes that BMD, bone loss and risk of fracture are site and age specific and are 

affected by different environmental and genetic factors. 
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 Excess 2.2.2.2.

Hypercalcaemia is defined by serum calcium concentrations > 2.75 mmol/L (11 mg/dL) (EFSA NDA 

Panel, 2012). It is unlikely to occur with high intake of calcium from the diet alone but can be caused 

by high-dose calcium supplements, especially when accompanied by vitamin D supplements, as these 

can increase calcium absorption. The most common causes of hypercalcaemia include malignant 

tumours, hyperparathyroidism of different aetiology and, less frequently, excessive calcium and/or 

vitamin D intakes. Clinical symptoms of persistent hypercalcaemia are fatigue, muscular weakness, 

anorexia, nausea, vomiting, constipation, tachycardic arrhythmia, soft tissue calcification, failure to 

thrive and weight loss. Hypercalcaemia can lead to hypercalciuria when the renal capacity of calcium 

re-absorption is exceeded, and to renal concentration defects resulting in polyuria through activation of 

the renal calcium-sensing receptor. Consequences of severe chronic hypercalcaemia are 

nephrolithiasis and impairment of kidney function, resulting in a loss of the concentrating ability of the 

kidney (i.e. a decrease in salt and water reabsorption), and in volume and salt depletion. Chronic 

hypercalcaemia may also lead to calcification of soft tissues (e.g. nephrocalcinosis and vascular 

calcification), particularly when phosphorus concentrations in the blood are also high, as in renal 

insufficiency. The age-related decrease in renal function increases the sensitivity of older people to 

excess calcium intake. 

The SCF (2003) based the derivation of a Tolerable Upper Intake Level (UL) for calcium on the 

evidence of different intervention studies of long duration, some of which were placebo controlled, in 

which total daily calcium intakes of 2 500 mg from both diet and supplements were tolerated without 

adverse effects. Because of the abundance of data, the application of an uncertainty factor was 

considered unnecessary. A UL of 2 500 mg of calcium per day from all sources was proposed for 

adults, and for pregnant and lactating women. In 2012, the EFSA NDA Panel (2012) concluded that 

there were no new data supporting a revision of the UL for calcium for adults (including pregnant and 

lactating women) of 2 500 mg, and that no new data had become available which would allow the 

setting of a UL for infants, children or adolescents. 

2.3. Physiology and metabolism 

2.3.1. Intestinal absorption 

Intestinal calcium absorption occurs through both an active, saturable, transcellular process and a non-

saturable, passive process. Active transport involves entry of calcium into the enterocyte and is 

controlled by 1,25-dihydroxy-calciferol (1,25(OH)2D or calcitriol). This is the hydroxylated form of 

vitamin D (25-hydroxy-calciferol or calcidiol), the synthesis of which is regulated by PTH. It has been 

proposed that the epithelial calcium-selective channel TRPV6 mediates 1,25(OH)2D-dependent uptake 

of calcium across the brush border (Christakos, 2012). Calcium is then moved to the interior of the 

enterocyte by calcium-binding protein (CaBP), calbindin, the synthesis of which is dependent on 

1,25(OH)2D. Finally, calcium is extruded from the basolateral membrane against a concentration 

gradient by the intestinal plasma pump, PMCA1b, again controlled by 1,25(OH)2D and also by dietary 

calcium intake (Christakos, 2012). Passive transport is paracellular, taking place through the tight 

junctions and structures present within intercellular spaces throughout the entire length of the intestine, 

although it predominates in the more distal regions. 

Digested food (chyme) travels down the lumen of the small intestine for approximately 3 hours, 

passing through the duodenum in a few minutes and taking 2–3 hours to travel through the distal half 

of the small intestine (Christakos, 2012). Transcellular (active) transport is the major route of calcium 

absorption, with paracellular (passive) transport being responsible for an estimated 8–23 % of total 

calcium absorbed (McCormick, 2002). However, when calcium intake is high, paracellular transport 

accounts for a higher proportion of absorbed calcium because CaBP is rate-limiting and down-

regulated when exposed to high concentrations of calcium (Bronner, 2003). Although the efficiency of 

absorption is highest in the duodenum (Wasserman, 2004), most calcium is absorbed in the ileum, 

presumably because the exposure time of the chyme is much longer than that in the proximal intestine. 

Calcium can also be taken up in the colon by passive absorption: with a habitual estimated intake of 
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620 mg/day, the percentage of colonic absorption (i.e. absorption > seven hours post ingestion) was 

calculated to be 4.2 % (Barger-Lux et al., 1989) and, at intakes of about 900 mg/day, colonic 

absorption was 5.7 % (Abrams et al., 2007). 

Fractional calcium absorption is inversely related to the concentration of calcium present in the gut 

lumen (Ireland and Fordtran, 1973) and dietary load (Heaney et al., 1990). For example, absorption 

from a meal containing 15 or 500 mg of calcium was 64 and 28 %, respectively (Heaney et al., 1990). 

In order to obtain reproducible data for calcium absorption at different levels of intake, a period of 

adaptation is required, which should be a minimum duration of one week (Dawson-Hughes et al., 

1993). In women adapted to a high (2 000 mg/day) calcium diet, whole-body retention of calcium 

increased from 27 to 37 % when they were given a low (300 mg/day) calcium diet for two weeks; this 

was accompanied by a decline in serum calcium and an increase in serum PTH and 1,25(OH)2D 

concentrations (Dawson-Hughes et al., 1993). 

Calcium absorption is affected by vitamin D status (Seamans and Cashman, 2009). It has been shown 

to be low in patients with vitamin D deficiency (Nordin, 1997), but there is uncertainty about the 

serum concentration of 25(OH)D that is required for optimal calcium absorption (Need and Nordin, 

2008; IOM, 2011; Aloia et al., 2014). 

Calcium absorption varies throughout the lifespan, being higher during periods of rapid growth and 

lower in old age. It has been estimated that, in children, 3–3.5 % of the variability in absorption 

appears to be associated with height (Abrams et al., 2005), which presumably reflects the calcium 

requirement for bone growth. Table 1 shows the results of studies that have used dual stable isotope 

techniques for assessing calcium absorption in children. 

 Summary of results of calcium absorption studies carried out in children using the dual Table 1: 

stable isotope technique 

Age (years), 

mean ± SD  

or range 

Sex Ethnicity n Mean usual 

calcium intake 

(mg/day) ± SD 

Calcium 

dose (mg) 

Mean 

absorption ± SD 

(%) 

Reference 

5–7 months Male and 

female 

White US 14 215 from breast 

milk plus 44 from 

weaning food 

Not reported 61.3 ± 22.7 Abrams et 

al. (1997a) 

30 ± 2 months Male and 

female 

Mixed US 28 551 ± 41 One-third of 

usual intake 

45.6 ± 2.5 Lynch et 

al. (2007) 

6.1–9 Male and 

female 

White US 27 912 ± 58 Not reported 28.9 Abrams et 

al. (2001) 699 ± 55  

during study 

30.8 

7–8.9 Female US 

Caucasian 

19 1 200  

during study 

~350 32 ± 2 Abrams et 

al. (1999) 

Mexican  34 ± 2 

7.7 ± 2.1 Female US 21 907 One-third of 

usual intake 

27.7 ± 8.2 Abrams 

and Stuff 

(1994) 

10.9 ± 1.1 13 931 34.4 ± 11.9 

15.2 ± 1.3 17 955 25.0 ± 7.9 

8.3 ± 0.7 Female Mixed US 26 1 200  

during study 

350 33.0 ± 7.4 Abrams et 

al. (2000)
(a)

 9.1 ± 0.9 34 30.7 ± 9.9 

10.2 ± 0.8 34 36.6 ± 8.7 

10–13 Female US 17 1 010, 1 300  

during study 

300 39 ± 9 Whisner et 

al. (2013) 

11.8 ± 0.8 Female Mostly 

Caucasian 

29 1 200–1 300 400 32.3 ± 9.8 Griffin et 

al. (2002) 

12 ± 1  Female  White US 10 1 880 627 41 ± 15 Wastney et 

al. (2000) 848 283 37 ± 11  

(from diet) 
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Age (years), 

mean ± SD  

or range 

Sex Ethnicity n Mean usual 

calcium intake 

(mg/day) ± SD 

Calcium 

dose (mg) 

Mean 

absorption ± SD 

(%) 

Reference 

9.2 ± 2.5 

(premenarche) 

Female White 36  916 One-third of 

usual intake 

30 ± 10 Abrams et 

al. (1995) 

15.4 ± 0.9 

(postmenarche) 

15 962 25 ± 8 

11.5 ± 0.2 Female White 28  1 222 350 43.0 ± 2.2 Abrams et 

al. (2004) 10.9 ± 0.2 Black 23 

11.7 ± 1.5 Male and 

female 

US mixed 25 1 310  

during study 

One-third of 

intake 

27.4 ± 12.6 

(boys), 24.5 

(girls) 

Abrams et 

al. (1997b) 

15.3 (14–16) Male Dutch 12 1 267  

during study 

200 47.8 ± 16.4 van den 

Heuvel et 

al. (1999) 

(a): The three age groups in this study represent early prepubertal, late prepubertal and pubertal (Tanner stage 2). 

In infants aged 5–7 months given breast milk and weaning food, the majority of calcium was provided 

by the milk; mean absorption was 61.3 ± 22.7 % (Abrams et al., 1997a). In children aged 30 months, 

absorption was 45.6 ± 2.5 % (Lynch et al., 2007). In 6- to 9-year-old children, absorption from either 

calcium-fortified cereal or milk was 31 % when the mean dietary intake was 699 ± 58 mg/day and 

29 % when the intake was 912 ± 55 mg/day (Abrams et al., 2001). In 7- to 8-year-old children 

consuming diets containing 1 200 mg calcium/day, absorption was 32 ± 2 % (Abrams et al., 1999). 

The Panel notes that calcium absorption is high in infancy (absorption efficiency of about 60 %) and 

decreases during childhood, from around 45 % in children aged 1–3 years to 30 % in children aged 

about 6 years. 

Absorption is affected by pubertal status. When longitudinal measurements of calcium absorption in 

girls adapted to a diet containing 1 200 mg calcium/day were undertaken, at 8 years of age absorption 

was 33.0 ± 7.4 % (n = 26), at 9 years of age absorption was 30.7 ± 9.9 % (n = 34) and at 10 years of 

age absorption was 36.6 ± 8.7 % (n = 34) (Abrams et al., 2000). In another study in girls aged 7, 10 

and 15 years, absorption values were 27.7 ± 8.2, 34.4 ± 11.9 and 25.0 ± 7.9 %, respectively (Abrams 

and Stuff, 1994). In girls aged 12 years consuming either a low- (848 mg) or high-calcium (1 880 mg) 

diet, dietary absorption (as opposed to absorption from the test meal, which generally contains one-

third of the daily intake of calcium) was calculated using compartmental modelling and found to be 

37–41 % (Wastney et al., 2000). In 10- to 13-year-old girls, Whisner et al. (2013) reported an 

absorption of 39 ± 9 %. In boys aged 14–16 years consuming approximately 1 200 mg calcium/day, 

absorption was 47.8 ± 16.4 % (van den Heuvel et al., 1999). The Panel notes that absorption values 

reported in the literature differ depending on the study population, habitual calcium intake and stage of 

puberty. The Panel notes that absorption increases in line with skeletal growth: 35 % at 7–10 years, 

40 % at 11–14 years and 45 % in boys aged 15–17 years (van den Heuvel et al., 1999). In post-

pubertal girls aged 15–17 years, absorption is 35 %. The Panel notes that these absorption data were 

obtained from studies in children consuming dietary calcium from 800 to 1 800 mg per day. 

In adults, dietary calcium absorption is approximately 25 % (Gibson, 2005) but it is lower in 

postmenopausal women (Heaney et al., 1989) and in men over 60 years of age (Nordin and Morris, 

2011). This appears to be the result of a developing resistance to the action of 1,25(OH)2D; fractional 

calcium absorption from diets containing different levels of calcium was correlated with serum 

1,25(OH)2D concentration in young (28.7 ± 5.3 years) but not in older (72.5 ± 3.0 years) women 

(Pattanaungkul et al., 2000). The menopause is associated with a significant fall in calcium absorption, 

possibly as a result of lower oestrogen levels affecting receptors in the small intestine (Nordin et al., 

2004). Data from early radioisotope studies show a continuous reduction in absorption from the age of 

60 years in men and women (Bullamore et al., 1970). Using data from 189 women aged 35–45 years 

at the start of the study who were followed for 17 years, Heaney et al. (1989) calculated an average 



www.manaraa.com

Dietary Reference Values for calcium 

 

EFSA Journal 2015;13(5):4101 13 

fall in absorption efficiency of 0.21 % per year after the age of 40 years, and a one-time decrease of 

about 2.2 % at the time of menopause. 

Absorption increases approximately two-fold during pregnancy, in conjunction with increased 

expression of CaBP (Cross et al., 1995; Ritchie et al., 1998), and because it occurs before the third 

trimester when fetal growth is greatest, it is assumed to be a physiological adaptation that is driven by 

the anticipated increased requirements for calcium and mediated through changes in 1,25(OH)2D 

(Gertner et al., 1986). By 2–3 months post partum, calcium absorption returns to values close to those 

observed in early gestation or prior to conception (Ritchie et al., 1998). 

There are differences in calcium metabolism that are related to ethnicity, but these are not usually 

manifest as differences in absorptive efficiency (Bell et al., 1993; Kung et al., 1998). Similar levels of 

fractional 
47

Ca retention were reported in black and white women adapted to low- and high-calcium 

diets, despite higher concentrations of 1,25(OH)2D in black people, indicating that black people may 

be less responsive to the action of 1,25(OH)2D (Dawson-Hughes et al., 1993). However, one study 

found that postmenarchal African American girls had a higher absorption efficiency of calcium than 

Caucasian girls (Abrams et al., 1996). 

Absorption is also influenced by genotype, for example polymorphisms of the vitamin D receptor gene 

Fok1 (Abrams et al., 2005). 

There are a number of dietary constituents that affect the percentage of calcium absorption, although 

the total calcium content of the diet is usually the overriding determinant (IOM, 1997). Acute studies 

of single foods, generally undertaken using stable isotopes, do not provide global estimates of 

absorption from whole diets or information on the long-term effects of calcium bioavailability on bone 

health (Fairweather-Tait and Teucher, 2002). However, the percentage of calcium absorption in food 

groups that provide the majority of calcium in the diet, including milk and milk products, grains (IOM, 

1997; Martini and Wood, 2002) and water (Heaney, 2006), is fairly similar. Calcium may, however, 

be poorly absorbed from foods rich in oxalic acid (e.g. spinach and rhubarb). Similarly, absorption is 

low from foods high in phytic acid (whole grains, legumes, nuts, seeds) (IOM, 1997), with the 

exception of soybeans where, for example, the percentage of absorption from calcium-fortified 

soymilk and cow’s milk is similar (Zhao et al., 2005). 

Absorption of calcium from food supplements depends on when they are consumed and the dose: 

smaller doses taken with meals are better absorbed (Heaney, 1991). The solubility, chemical form and 

particle size of calcium does not greatly affect absorption (Nowak et al., 2008; Elble et al., 2011), 

although there are reports of higher percentages of absorption from calcium citrate malate (Reinwald 

et al., 2008) and from “nanonised” pearl powder (Chen et al., 2008). Individuals with achlorhydria 

absorb calcium poorly from less soluble forms of calcium, such as calcium carbonate, unless the 

supplement is taken with a meal (Recker, 1985). 

2.3.2. Transport in blood 

Calcium is present in the blood in three different forms: (1) as free Ca
2+

 ions, (2) bound to proteins 

(about 45 %) and (3) complexed to citrate, phosphate, sulphate and carbonate (about 10 %). Calcium 

in the blood (and in extracellular fluid) is kept constant at 2.5 mmol/L (range 2.25–2.6 mmol/L), and 

ionised calcium (between 1.1 and 1.4 mmol/L) is controlled by the interrelated action of three 

hormones, namely PTH, 1,25(OH)2D and calcitonin (Section 2.3.5). 

2.3.3.  Distribution to tissues 

Calcium deposition into bone is an on-going process during periods of growth, with maximal accretion 

during the pubertal growth spurt (Matkovic et al., 1994). 

Maternal and fetal calcium metabolism are different: in the fetus, serum calcium, phosphorus and 

ionised calcium are higher than maternal values, whilst PTH and 1,25(OH)2D are lower (IOM, 2011). 
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Fetal requirements for calcium are met through physiological changes in the mother, including 

increased efficiency of absorption and a decrease in maternal bone mineral, predominantly from 

trabecular bone; calcium is actively transported across the placenta from the mother to the fetus 

(Olausson et al., 2012). Maternal serum calcium concentrations fall owing to plasma volume 

expansion (Pedersen et al., 1984) and higher 1,25(OH)2D (Seely et al., 1997), but ionised serum 

calcium remains within the normal range (Seely et al., 1997). 

2.3.4. Storage 

The skeleton and teeth contain 99 % of total body calcium and bone provides a reservoir for other 

essential calcium-dependent functions in the body. There are two types of bone in the skeleton: 80 % 

is cortical bone, the outer part of the skeletal structures, which is dense and compact with a high 

resistance to impact and a slow turnover rate, and 20 % is trabecular bone, which is found inside the 

long bones, vertebrae, pelvis and other large flat bones, which is less dense and has a higher turnover 

rate. 

The amount of calcium taken up into bone is age (and growth) dependent. Abrams (2006) has 

summarised the retention data available from the literature for infants; for exclusively breast-fed 

infants, retention is 94 mg/day based on the classical balance technique (Fomon et al., 1982), and 

82 mg/day from an isotope balance study (Abrams et al., 1997a), whereas, for exclusively formula-fed 

infants, retention is more variable but higher. Specker et al. (1997) reported that, although there was a 

positive relationship between calcium intake during the first 6 months of life and bone mineral content 

(BMC) at 6 months, the difference had disappeared by 12 months of age. 

There are very few data on bone calcium accretion in young children. Weaver (1994) proposed values 

for calcium accretion in bone of 80 mg/day at 0–2 years of age and of 50 mg/day at 6–8 years, based 

on calculations made by Peacock (1991). During periods of skeletal growth, absorbed calcium that is 

retained in the body is transported to the bone; therefore, measures of calcium retention can be used as 

an indirect measure of bone calcium accretion. In 1- to 4-year-old children (n = 28, mean age 30 ± 2 

months, mean weight 12.6 ± 0.4 kg (standard error, SE)) mean calcium retention, determined using a 

stable isotope technique, was 162 ± 17 mg/day (median 142 mg/day) (Lynch et al., 2007). However, 

although endogenous urinary and faecal losses were accounted for in the calculation of retention, 

dermal losses were not measured. If these are assumed to be 20 mg/day, the median value for calcium 

bone accretion is 120 mg/day for children aged 1–4 years. The Panel notes the absence of such data 

for children aged 5–8 years. 

There is a marked increase in calcium accretion during puberty; Abrams et al. (2000) observed an 

increase during the late pre-pubescent phase compared with the early pre-pubescent phase: 135 ± 53 

versus 110 ± 45 mg/day, respectively. Martin et al. (1997) used dual-energy X-ray absorptiometry 

(DXA) to monitor BMC for a period of four years in North American children and calculated from 

cross-sectional data that the mean daily calcium retention throughout puberty was 282 mg in boys and 

212 mg in girls. Longitudinal data collected from 60 boys and 53 girls revealed higher values for bone 

calcium accretion in males (Bailey et al., 2000). The mean age of peak calcium accretion was 

14.0 years in boys and 12.5 years in girls, at which time calcium accretion rates were 359 ± 82 (range 

199–574) mg/day for boys and 284 ± 59 (range 171–458) mg/day for girls. These values were 

obtained from children consuming diets providing 1 140 ± 392 mg/day (boys) and 1 113 ± 378 mg/day 

(girls) of calcium. 

Molgaard et al. (1999) measured the annual increase in BMC in Danish girls (n = 192) and boys 

(n = 140) aged 6.5–19.5 years and, assuming that 32.2 % of bone is calcium, they calculated bone 

calcium accretion. The 50
th
 centiles (mg calcium/day) for girls at Tanner stages 1–5 on first 

examination were 98.9, 192.6, 220.1, 116.4 and 60.8, respectively. For boys, the values were 107.6, 

187.1, 316.7, 250.8 and 96.8, respectively. According to van Buuren et al. (2012), the age at which 

50 % of European girls reach Tanner stages 2–5 (mean of pubic hair and breast indicators) are 10.6, 

11.7, 12.7 and 13.9 years. For boys (mean of pubic hair and genital indicators), the ages are 11.6, 13.0, 
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13.9 and 15.0 years. The Panel notes that, in both girls and boys, the maximum rate of bone accretion 

occurs at Tanner stage 3, at the age of 11.7 years for girls and 13.0 years for boys. 

Vatanparast et al. (2010) collected longitudinal data from Canadian Caucasian boys and girls aged 9–

18 years (not every subject completed all seven years of data collection; the numbers of children at 

each age are given in Table 2) with the aim of determining the average accumulation of calcium over 

these years in order to determine calcium requirements for bone growth. Total body BMC was 

determined from annual DXA scans of the whole body, with 0.6 % reproducibility. The total body 

BMC, unadjusted for body size, was calculated at defined ages. Annual calcium retention (g/year) was 

derived by assuming that the BMC was 32.2 % calcium. The daily amount of calcium retained in bone 

at each age is given in Table 2. 

 Bone calcium accretion from 9 to 18 years of age according to Vatanparast et al. (2010) Table 2: 

Age (years) Boys
 

Girls
 

Number of subjects Calcium retained 

(mg/day) 

Number of subjects Calcium retained 

(mg/day) 

9 19 119.3 34 87.7 

10 32 100.6 53 99.3 

11 53 127.5 65 144.5 

12 75 154.2 78 189.7 

13 88 204.4 92 234.7 

14 89 296.3 95 164.1 

15 79 261.7 86 107.3 

16 66 235.8 61 67.0 

17 51 143.1 45 49.5 

18 36 111.1 34 74.4 

Mean ± SD  175.4 ± 69.3  121.8 ± 59.7 

The Panel considers that the longitudinal data generated by Vatanparast et al. (2010) provide the most 

comprehensive information on bone calcium accretion in boys and girls aged 9–18 years. 

Bone mass increases substantially during the first two decades of life, reaching a plateau, referred to as 

peak bone mass (PBM), when BMD is stable. The precise timing of this is uncertain, and the rate of 

bone accrual varies by site (Hui et al., 1999; Ohlsson et al., 2011). A longitudinal study in Canada 

reported that there was no increase in BMC at any site 7 years after peak linear growth (peak height 

velocity); peak linear growth occurred at 11.8 years in girls and 13.5 years in boys (Baxter-Jones et al., 

2011), as it is related puberty (Darelid et al., 2012), and this equates to a PBM at 18.8 years in women 

and 20.5 years in men. However, another longitudinal study from Canada reported that, although total 

hip PBM was attained at 16–19 years in women and 19–21 years in men, lumbar spine PBM occurred 

much later, at 33–40 years in women and 19–33 years in men (Berger et al., 2010). A cross-sectional 

study in women reported that, by the age of 22.1 ± 2.5 years, 99 % of peak BMD is attained and, by 

the age of 26.2 ± 3.7 years, 99 % of peak BMC is attained (Teegarden et al., 1995), indicating that 

calcium continues to be accrued in bones in young adults, with males having PBM at a later age than 

females. 

For estimating Dietary Reference Values (DRVs), the Panel considers it prudent to make an allowance 

for young adults (up to the age of 25 years) for calcium accretion into bone tissue. 

2.3.5. Metabolism 

Serum concentrations of calcium are homeostatically regulated to remain within a narrow range of 

2.25–2.6 mmol/L (ionised calcium 1.1–1.4 mmol/L) and concentrations of soft tissue calcium are 

maintained at the expense of bone. When insufficient calcium is provided from the diet to balance 

obligatory losses and requirements for growth, calcium is taken from the bone. This mechanism is 

achieved through the interaction of three major calcium-regulating hormones, PTH, 1,25(OH)2D and 
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calcitonin. The latter two determine how much Ca
2+

 moves out of or into the body, whilst PTH 

determines how Ca
2+

 moves between the extracellular fluid and bone. A decrease in serum 

concentrations of Ca
2+

 induces the release of PTH via the calcium-sensing receptor (CaSR) which is 

located on the cell surface of the parathyroid glands. PTH stimulates 1,25(OH)2D synthesis in the 

kidney, bone resorption and renal reabsorption of calcium (Perez et al., 2008). Synthesis of 

1,25(OH)2D is also stimulated by low serum phosphorus concentrations and decreases with high 

phosphorus concentrations. An increase in serum concentrations of Ca
2+

 inhibits PTH secretion via the 

CaSR and 1,25(OH)2D synthesis, and stimulates calcitonin secretion by the parafollicular C cells of 

the thyroid gland. Other locations of the CaSR include the intestine, kidney, thyroid gland, lung, brain, 

skin, bone marrow and osteoblasts. According to population-based genome-wide association studies, 

individual serum calcium concentrations within the normal range are influenced by some single-

nucleotide polymorphisms of the CaSR gene (O'Seaghdha et al., 2010; Riccardi and Brown, 2010). 

Other hormones involved are oestrogen and testosterone, which prevent bone loss by inhibiting the 

stimulatory effect of cytokines on osteoclasts (Adamova et al., 2009); adrenal steroids, which decrease 

osteoblast function and bone formation and increase osteoclast number and activity; glucocorticoids, 

which decrease calcium absorption and renal calcium reabsorption and augment renal excretion; 

growth hormone, which facilitates intestinal absorption and renal excretion of calcium; and thyroid 

hormones (hypothyroidism and hyperthyroidism are both associated with an increased risk of fracture 

but the underlying mechanism for bone loss is incompletely understood). 

Bone constantly undergoes remodelling, and almost the entire adult skeleton is remodelled over a 10-

year cycle. Trabecular bone turns over more rapidly than cortical bone, and weight-bearing activities 

(mechanical loading of the bone) are an important determinant of rates of bone turnover and can 

promote bone formation in children. During bed-rest, bone formation is rapidly decreased in parallel 

with increased urinary calcium excretion; bone collagen synthesis is decreased and breakdown 

increases after a time lag of several weeks (Scheld et al., 2001). 

Although the current consensus is that genetic factors predominate in determining the rate of bone 

turnover (IOM, 2011), diet also plays a key role. Calcium, phosphorus and magnesium are structural 

components of bone, and vitamin D is required for calcium and phosphorus absorption. Many other 

dietary constituents are involved both individually and in complex combinations at various stages of 

bone metabolism (Schulman et al., 2011). 

2.3.6. Elimination 

Unabsorbed dietary calcium is lost in the faeces. The main routes of endogenous calcium excretion are 

urine, faeces, and skin and sweat (dermal losses). 

 Urine 2.3.6.1.

Urinary excretion is a function of the balance between calcium load filtered by the kidneys and the 

efficiency of absorption by the renal tubules. Approximately 98 % of filtered calcium is reabsorbed; 

approximately 70 % is reabsorbed passively in the proximal tubule and the rest is under homeostatic 

regulation by the CaSR of the ascending loop of Henle. Urinary calcium comprises absorbed calcium 

that is lost from the body after the requirements for bone and endogenous faecal and dermal excretion 

have been met. In adults, a positive association has been reported between urinary calcium excretion 

and calcium intake (Matkovic et al., 1995), but higher calcium intakes (with daily intakes ranging 

from 700 to 1 800 mg/day) are associated with only small increases in urinary calcium (Taylor and 

Curhan, 2009) because of a lower calcium absorption. 

In a controlled feeding study in 27 healthy postmenopausal women, Hunt et al. (2009) found that 

urinary excretion was related to both calcium and protein intake: 127 mg/day with a low-protein diet 

(10 % of energy) providing 675 mg calcium/day; 150 mg/day with a high-protein diet (20 % of 

energy) providing 675 mg calcium/day; 203 mg/day with a low-protein diet (10 % of energy) 

providing 1 510 mg calcium/day; and 226 mg/day with a high-protein diet (20 % of energy) providing 

1 510 mg calcium/day. Charles et al. (1991) examined balance data from Nordin et al. (1987) and 
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estimated that the minimum obligatory renal loss of calcium was 116 mg/day in adults, but 

emphasised the high degree of inter-individual variation and the multiple effects of environmental, 

behavioural and nutritional factors on the ability of the kidney to respond to calcium-conserving 

stimuli. 

In young children (aged 2–3 years), urinary calcium excretion was reported to be approximately 

40 mg/day, and in older children (aged 7–12 years) it was around 80 mg/day and increased to much 

higher levels (approximately 160–240 mg) in 17-year-olds (Peacock, 1991). Lynch et al. (2007) used 

stable isotopes to measure urinary calcium excretion in eight children aged 26 ± 3 months (body 

weight 12.5 ± 0.8 kg and calcium intake 563 ± 70 mg/day) and reported a mean of 2.2 ± 0.2 (median 

1.1) mg/kg body weight per day. However, six individuals had values > 4 mg/kg body weight per day, 

the threshold used to define hypercalciuria; therefore, the Panel considers that the mean value cannot 

be taken as representative for healthy children aged 2–3 years. 

Endogenous urinary excretion was measured using a stable isotope technique in five children aged 3–

14 years, and individual data (age) were 2.8 (female, 19 kg, 3 years), 1.7 (male, 39 kg, 5 years), 2.0 

(male, 57 kg, 12 years), 1.1 (male, 62 kg, 14 years) and 2.1 (male, 91 kg, 14 years) mg/kg body weight 

per day (Abrams et al., 1991). The Panel notes the high inter-individual variability and small numbers, 

and considers that these data cannot be used to derive urinary calcium losses. 

The mean urinary calcium excretion in 370 girls (aged 10.85 ± 0.41 years, body weight 39.92 ± 0.42 

(SE) kg) consuming 948 ± 20 (SE) mg calcium/day was 82.4 ± 2.4 (SE) mg/day (Matkovic et al., 

1995); dietary sodium intake was the most powerful predictor of urinary calcium excretion and, when 

combined with calcium and protein intakes, it explained 21.4 % of the variation in urinary calcium. 

The Panel notes that this study measured urinary calcium excretion, not obligatory losses in urine. 

In children aged 9–14 years consuming a diet containing 1 200 mg calcium/day for two weeks before 

measurements were made, urinary excretion was determined using an intravenous stable isotope of 

calcium and was reported to be 93.9 ± 43.8 mg/day in girls (n = 13, mean age 12.3 ± 1.6 years, mean 

body weight 48.0 ± 17.7 kg) and 66.9 ± 26.2 mg/day in boys (n = 12, mean age 10.9 ± 1.1 years, mean 

body weight 35.7 ± 7.0 kg) (Abrams et al., 1997b). There was a marked effect of body weight on 

urinary calcium excretion (the 12-year-old girls, weighing 48 kg, excreted nearly 30 % more calcium 

than the 11-year-old boys, weighing 36 kg). The Panel notes that when the mean values were 

expressed in relation to mean body weight, the urinary calcium excretion was similar between boys 

and girls: 1.96 mg/kg body weight per day in girls and 1.87 mg/kg body weight per day in boys. 

Welch et al. (1995) employed calcium stable isotopes and reported a mean urinary excretion of 

2.4 mg/kg body weight per day in 38 female children aged 5–16 years, with a calcium intake of 

31 ± 12 mg/kg body weight per day. However, in five girls, the excretion was > 4 mg/kg body weight 

per day, the threshold used to define hypercalciuria. Adjusted data for the group excluding these 

individuals were not provided, so the estimate of 2.4 mg/kg body weight per day may not be 

representative of healthy girls. 

The Panel notes that, during periods of rapid growth, the principal determinants of urinary calcium 

excretion are body weight and age. 

The Panel notes the difficulties in determining the minimum obligatory loss of calcium in urine. This 

is partly because of the effects of growth (body weight) and physiological responses at different levels 

of habitual intake. Even with the use of stable isotope tracers and modelling to eliminate the effects of 

dietary intake on excretion, there are differences in estimated values for obligatory losses in urine in 

each population group. The Panel considers that a value of 2 mg/kg body weight represents daily 

obligatory urinary calcium losses in children. 
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 Faeces 2.3.6.2.

Faecal calcium is derived from a mixture of unabsorbed calcium, sloughed mucosal cells and intestinal 

secretions. Endogenous (obligatory) losses vary with body size (and possibly calcium intake), but are 

unrelated to age or sex (Charles et al., 1991). Stable isotope techniques have to be used to measure 

endogenous faecal losses of calcium and results are expressed per kg body weight. In adults, early 

isotope studies indicate a mean loss of 2.1 mg/kg body weight per day (Heaney and Skillman, 1964). 

A study in 191 perimenopausal women (mean body weight 63.4 ± 11.2 kg) reported an endogenous 

calcium excretion into the gastrointestinal tract of 140 ± 34 mg/day (Heaney and Recker, 1994). When 

adjusted for body weight, the Panel notes that this equates to a loss of 2.2 mg/kg body weight per day. 

Endogenous faecal calcium excretion was measured in five children aged 3–14 years and the mean 

value was 1.4 mg/kg body weight per day (Abrams et al., 1991). Lynch et al. (2007) measured 

endogenous faecal calcium excretion in eight young children (aged 26 ± 3 months, body weight 

12.5 ± 0.8 kg) with a mean calcium intake of 563 ± 70 mg/day, and reported a mean value of 

3.5 mg/kg body weight per day. The Panel notes that the intake of calcium is rather high for 2-year-old 

children (see Section 3.2), and this may increase endogenous losses of calcium. 

In children aged 9–14 years consuming a diet containing 1 200 mg calcium/day for two weeks before 

measurements were made, obligatory faecal excretion was reported to be 61.2 ± 27.2 mg/day in girls 

(n = 13, mean age 12.3 ± 1.6 years, mean body weight 48.0 ± 17.7 kg) and 69.1 ± 28.9 mg/day in boys 

(n = 12, mean age 10.9 ± 1.1 years, mean body weight 35.7 ± 7.0 kg) (Abrams et al., 1997b). This 

equates to an endogenous faecal loss of 1.28 and 1.94 mg/kg body weight per day in girls and boys, 

respectively. In 36 girls aged 11 years (mean body weight approximately 43 kg) consuming a low-

calcium diet (~300 mg/day), endogenous faecal calcium was 57 ± 4 mg/day and, with a high-calcium 

diet (1 300 mg/day), it was 86 ± 4 mg/day (Abrams et al., 2004). The Panel notes that this equates to 

an endogenous faecal loss of 1.3 and 2 mg/kg body weight per day when consuming a low- and high-

calcium diet, respectively. 

Wastney et al. (2000) determined endogenous faecal excretion values of 109.6 ± 50 and 

92.8 ± 40 mg/day in girls aged 12 (range 11–14) years (body weight 53 kg) consuming 848 or 

1 896 mg calcium/day, which equates to a faecal excretion of 2.06 or 1.75 mg/kg body weight per day 

on the low- or high-calcium diets, respectively. The Panel notes that these differences were not 

significantly different and the fact that the high-calcium diet did not increase endogenous faecal 

calcium loss is not consistent with the findings of Abrams et al. (2004). 

The Panel notes the limited and divergent data for endogenous faecal losses of calcium in children. 

Abrams et al. (1999) suggested typical values for endogenous faecal calcium excretion of 2–5 mg/kg 

body weight per day in older infants and small children and of 1–2 mg/kg body weight per day in 

adolescents and adults. Peacock (1991) proposed values for different ages using radioisotope data 

from adults; these range from 30 mg/day at 2 years of age to around 120 mg at 16 years of age. The 

average values reported for adults are 136 mg/day (Charles et al., 1991) and 140 mg/day (Heaney and 

Recker, 1994), which equate to a daily endogenous faecal loss of around 2 mg/kg body weight. In the 

absence of concordant data, the Panel considers that a value of 1.5 mg/kg body weight per day 

represents endogenous faecal losses of calcium in children. 

 Skin and sweat 2.3.6.3.

Sweat contains calcium, but the concentration is affected by the volume secreted and losses via this 

route are very variable, depending on the climate and level of physical activity. Calcium loss in sweat 

has been measured in small groups of volunteers or patients, sometimes under conditions that induce 

sweating, using a variety of techniques, e.g. plastic bags to collect sweat (Consolazio et al., 1966; 

Isaksson et al., 1967), skin washing and weight recording (Mitchell and Hamilton, 1949), cotton suits 

(Palacios et al., 2003) and skin patches (Rianon et al., 2003). In one study in healthy adults in which 

sweat loss was measured for 24 hours using skin patches, the estimated loss was 35 ± 4 mg/day 

(mean ± SE) (Rianon et al., 2003), but in another study using cotton suits and with variable activity 
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levels it was 103 ± 22 mg/day (Palacios et al., 2003). Hunt and Johnson (2007) used results from 19 

balance studies to estimate calcium requirements and two of these (young men and young overweight 

women) included measurements of whole-body surface losses of calcium (data unpublished). These 

were obtained over a two-day period by skin washing and extraction of calcium from cotton suits. The 

reported values for dermal losses of calcium were 3 mg/day in young men and 17 mg/day in young 

overweight women. 

The wide inter-individual and inter-study variations presumably reflect inaccuracies in the methods 

used (e.g. sweat collections not being representative of losses from the whole body, incomplete 

calcium extraction from cotton suits and/or calcium contamination) plus a limited ability to replicate 

normal living conditions. To circumvent these problems, Charles et al. (1983) used 
47

Ca and kinetic 

modelling to measure dermal losses of calcium in a study of calcium metabolism in patients with 

different calcium metabolic disorders. As part of this study, 15 healthy adults were given an 

intravenous injection of 
47

Ca and a daily retention curve was generated over 10 days by measuring 
47

Ca excretion in stools and urine. This was compared with retention measured by whole-body 

counting, and the difference was assumed to be dermal calcium loss. In the absence of exercise and 

with minimal sweating, the median dermal loss of calcium was 55 mg/day (range 50–94 mg/day). 

Charles et al. (1983) concluded that body size may be responsible for some of the inter-individual 

variation, as there was a correlation between dermal calcium loss and body surface area. In this study, 

dermal losses from the whole body were determined and the average loss during a seven-day period 

was calculated. However, there may be an error in count rate introduced by 
47

Ca redistribution within 

the body, which leads to an overestimation of dermal losses; the authors calculated that this error 

could lead to a maximum overestimation of dermal calcium loss of 35 %. Charles et al. (1991) 

reviewed the literature on dermal calcium loss and, although the loss of calcium through the skin is 

difficult to assess, a minimum obligatory dermal loss of 32–40 mg/day was proposed. 

The Panel notes that dermal losses are difficult to measure accurately and are very variable. There are 

no data on dermal losses in children but in adults there is a significant correlation between dermal 

calcium loss and body surface area (Charles et al., 1983). Therefore, the Panel considers that dermal 

losses in infants and children can be estimated by interpolation from the adult value using the mean 

body surface area for each age group. The data from a radio-isotope study (Charles et al., 1991), in 

which the mean dermal loss was 55 mg/day, are considered to be the most reliable, but this value may 

be an overestimate, and when the maximum potential error is taken into account, the dermal calcium 

loss falls to 36 mg/day. The Panel considers that a value of 40 mg/day represents dermal losses in 

adults. 

 Breast milk 2.3.6.4.

Breast milk calcium concentrations are homeostatically regulated and are not influenced by the 

mother’s intake of calcium (Olausson et al., 2012). There are compensatory physiological changes to 

maintain the calcium supply to the infant, including increased maternal efficiency of absorption in the 

later stages of lactation, enhanced renal reabsorption and reduced BMD; the magnitude of bone loss is 

directly related to feeding practices, but there are no long-term effects on bone that can be attributed to 

lactation (Olausson et al., 2012). Calcium in breast milk (post colostrum) is relatively constant for the 

first three months of lactation, with a concentration of 200–300 mg/L (5.0–7.5 mmol/L), and from 

then on it progressively declines (Atkinson et al., 1995). The concentration is independent of the 

volume of milk produced but there are large inter-individual variations in the calcium content of breast 

milk (Jarjou et al., 2012). The reasons for the differences are uncertain, although, as calcium is 

associated with the casein, phosphate and citrate fractions of milk, factors that regulate the 

concentration of these fractions will, by default, affect calcium concentration; genotype may also play 

a role (Olausson et al., 2012). The Panel considers that the calcium concentration of breast milk over 

the first three months of lactation is 200–300 mg/L. 
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2.3.7. Interaction with other nutrients 

There is an interaction between vitamin D and calcium that affects vitamin D economy. High calcium 

intake increases the half-life of 25(OH)D (Lips, 2012), which may be one of the reasons why clinical 

trials in which combined vitamin D and calcium supplements are given to decrease fracture incidence 

generally show more positive results than trials using vitamin D or calcium supplements alone (Lips, 

2012). 

Calcium and phosphorus are both required for bone mineral deposition and maintenance throughout 

life. Outside the skeleton, their essential but distinct physiological functions are controlled by specific 

transporters and hormonal systems, which also serve to secure the appropriate supply for bone health. 

Several interactions between phosphorus and calcium have been documented at both the intestinal and 

renal levels. Phosphate decreases urinary calcium excretion and increases calcium balance (Fenton et 

al., 2009). The consumption of a high-phosphorus/low-calcium diet and, inversely, of a high-

calcium/low-phosphorus diet can result in reduced absorption of the lower dose mineral which can 

lead to disturbances in calcium or phosphorus homeostasis, with possible detrimental consequences on 

bone health. The effect of a high-phosphorus diet on bone health is subject to some controversy but is 

recognised to be dependent on other components of the diet, including calcium and protein, for which 

there is a complex relationship (Teegarden et al., 1998), and is also affected by kidney function 

(Takeda et al., 2014). High phosphorus combined with low calcium intakes result in an increased 

serum PTH concentration which may adversely affect PBM, increase bone resorption, reduce BMD 

and increase the risk of osteoporotic fracture in later life. There is a dose-dependent effect of 

phosphorus on serum PTH concentration when calcium intake is low (Kemi et al., 2006). 

Increasing the intake of sodium results in a higher urinary calcium excretion (Zarkadas et al., 1989) 

and this may affect bone calcium balance. In a cross-over study in postmenopausal women comprising 

four successive five-week periods of controlled dietary intervention, each separated by a minimum 

four-week washout, the effects of moderately low and high calcium intakes (518 versus 1 284 mg/day) 

and salt (3.9 versus 11.2 g/day) in a Western-style diet were compared (Teucher et al., 2008). Stable 

isotope labelling techniques were used to measure calcium absorption and excretion, compartmental 

modelling (with bone as one of five body compartments) was undertaken to estimate bone calcium 

balance, and biomarkers of bone formation and resorption were measured in blood and urine. The 

high-salt intake elicited a significant increase in urinary calcium excretion (P = 0.0008); with the low-

calcium diet, the 24-hour mean calcium excretion increased from 123 to 141 mg/day and with the 

high-calcium diet the 24-hour mean calcium excretion increased from 159 to 192 mg/day. With a 

high-salt diet, there was no effect on bone calcium balance when intake of calcium was high, but with 

a low calcium intake, the balance became negative irrespective of salt intake. The Panel notes that a 

high intake of sodium appears to have a detrimental effect on bone calcium balance when intake of 

calcium is low. 

The positive association between fruit and vegetables and bone health has been suggested to partly 

result from their relatively high potassium content, as potassium bicarbonate supplements have been 

shown to be hypocalciuric (Sebastian et al., 1994). However, data from balance studies show that 

potassium intake is inversely associated with both urinary calcium excretion and intestinal calcium 

absorption (possibly through changes in renal phosphate retention which then affect 1,25(OH)2D 

synthesis), resulting in no net change in calcium balance, suggesting that the effect observed in the 

supplement studies is due to bicarbonate, not potassium (Rafferty and Heaney, 2008), and indicating 

that there may be other components of fruit and vegetables that have a beneficial effect on bone health. 

In a retrospective analysis of data from California and north-east Scotland in which postmenopausal 

women were enrolled in long-term randomised, placebo-controlled studies on the effects of low- or 

high-dose dietary potassium supplements on bone turnover, there was no effect of treatment on BMD 

change or bone resorption (Frassetto et al., 2012). Diets that produce an acid load or contain high 

amounts of animal protein may be associated with hypercalciuria, but the evidence supporting a role 

for these variables in the development of osteoporosis is inconsistent (reviewed by Hanley and 

Whiting (2013)). 
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In a cross-over study undertaken in 37 healthy women comparing a calcium sulphate-rich mineral 

water and milk, each providing about 480 mg calcium/day, there were significantly higher levels of 

calcium in the urine (20 mg/day) during the periods when the calcium sulphate-rich water was 

consumed (Brandolini et al., 2005). The authors suggest that the acidogenic action of the high sulphate 

intake may have been responsible for the increased calciuria. 

2.4. Biomarkers 

2.4.1. Biomarkers of intake 

When looking to circumvent the problems encountered when measuring dietary intake, entailing the 

collection of calcium intake data from all sources (food, drinks and supplements), availability of 

comprehensive up-to-date food composition data and information on the calcium content of water and 

other drinks, the use of an independent surrogate biomarker of intake has some advantages. First, 

changes in habitual dietary patterns which are frequently associated with prospective dietary 

assessment are not an issue. Second, the biomarker can reflect total calcium intake more accurately, as 

it does not rely on dietary recall (memory) or the collection of complete dietary records. As urinary 

calcium excretion depends on calcium intake, it has been proposed as a surrogate biomarker of 

calcium intake. Some epidemiological studies have reported a linear relationship between dietary and 

urinary calcium (Kesteloot and Joossens, 1990). However, in both cross-sectional (Charlton et al., 

2005; Toren and Norman, 2005) and long-term intervention (Zhu et al., 2011) studies, there is no clear 

relationship between dietary calcium intake and 24-hour urinary excretion. The Panel concludes that 

there are no reliable biomarkers of calcium intake. 

2.4.2. Biomarkers of status 

Serum calcium concentrations are maintained within a narrow range from the large calcium bone 

reservoir, irrespective of dietary calcium intake or whole-body calcium content/status. Serum ionised 

calcium concentration can be used to identify disturbances in calcium metabolism but is not useful for 

assessing status in healthy humans (Gibson, 2005). 

BMD and/or BMC can be used to assess the response to changes in intake over a relatively long period 

of time (> 1 year) (Gibson, 2005), but not to measure calcium status per se. Serum markers of bone 

formation (osteocalcin and bone-specific alkaline phosphatase) and urinary markers of bone resorption 

(pyridinoline and deoxypyridinoline) reflect changes more rapidly and have been measured in shorter 

term interventions (Seamans et al., 2011). The International Osteoporosis Foundation and the 

International Federation of Clinical Chemistry and Laboratory Medicine suggested that serum 

procollagen type 1 amino-terminal propeptide and serum cross-linked C-terminal telopeptide of type 1 

collagen could be used as reference bone turnover markers but require international reference 

standards (Vasikaran et al., 2011), although the Panel notes that results of a recent systematic review 

suggest that bone turnover biomarkers have a very low diagnostic value for osteoporosis (Biver et al., 

2012). These markers are influenced by a number of environmental and lifestyle factors, and change in 

relation to circadian rhythm (Chubb, 2012) and the length of the bone modelling transient (Aloia et al., 

2008). The measurements are also assay specific (Eastell et al., 2012), and further work is required to 

develop reference ranges and the standardisation of methods for bone turnover markers to be a useful 

adjunct in the assessment of status in different population groups. 

The Panel concludes that there are no suitable biomarkers of calcium status. 

2.5. Influence of genotype 

BMD is highly heritable, but there are age- and site-related differences. For example, using a classical 

twin design model it was shown that the genetic proportion of total variance for spine BMD was 88 % 

in premenopausal women and 77 % in postmenopausal women (Hunter et al., 2001). A study was 

carried out to examine the relationship between polymorphisms of the vitamin D receptor (VDR) gene 

and BMD (Stathopoulou et al., 2011). In a group of 578 Greek postmenopausal women, genotyping 

was performed for the BsmI, TaqI and Cdx-2 polymorphisms of the VDR gene. These polymorphisms 
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were not associated with BMD, osteoporosis or osteoporotic fractures, but, when stratified by calcium 

intake in the low-calcium group (< 680 mg/day), all polymorphisms were associated with the BMD of 

the lumbar spine (P < 0.05). After adjustment for potential covariates, BsmI and TaqI polymorphisms 

were associated with osteoporosis (P < 0.05), while the presence of the minor A allele of the Cdx-2 

polymorphism was associated with a lower spine BMD (P = 0.025). In the higher calcium intake group 

(> 680 mg/day), no significant differences were observed within the genotypes for all polymorphisms. 

It appears that the VDR gene only affects BMD in women with a low calcium intake. In addition to 

the proposed effects of target genes, there are well-described ethnic differences in BMD. For example, 

despite lower dietary calcium intake and serum 1,25(OH)2D concentrations, African Americans have a 

higher BMD and develop osteoporosis less frequently than European Americans (Freedman and 

Register, 2012). 

3. Dietary sources and intake data 

3.1. Dietary sources 

Rich food sources of calcium include dairy products, selected vegetables (such as spinach, purslane, 

chard, endive, and broccoli), legumes, nuts, fish with soft bones (e.g. tinned sardines) and calcium-

fortified foods. 

Currently, calcium carbonate, calcium chloride, calcium salts of citric acid, calcium gluconate, 

calcium glycerophosphate, calcium lactate, calcium salts of orthophosphoric acid, calcium hydroxide, 

calcium oxide and calcium sulphate may be added to both foods
6
 and food supplements.

7
 The calcium 

content of infant and follow-on formulae
8
 and processed cereal-based foods and baby foods for infants 

and young children
9
 is regulated. 

The calcium content of tap water varies widely. In tap water collected from 492 Spanish towns, the 

calcium concentration ranged from 0 to 337 mg/L and, in 182 varieties of bottled water commercially 

available in Europe, the concentration varied from 0.5 to 672 mg/L, with 16 % having a concentration 

> 100 mg/L and two varieties having concentrations > 300 mg/L (Martinez-Ferrer et al., 2008). 

The main dietary sources of calcium in different European countries vary, although dairy products are 

generally the most important food group (Welch et al., 2009); water may also contribute significantly 

to the daily intake in hard water areas. In Belgium, cow’s milk, sweetened milk drinks and cheese 

were the main sources of calcium intake (26, 25 and 11 %, respectively) in pre-school children 

(Huybrechts et al., 2011), and cow’s milk and dairy products constituted 48 % of the daily calcium 

intake of men and women in the Republic of Ireland (Burke et al., 2005) and 59 % in Italy (Lombardi-

Boccia et al., 2003), and were the main source of calcium in Croatia (Mandic-Puljek et al., 2005). 

Young Swedish vegans obtained approximately 30 % of their calcium from supplements, followed by 

vegetables, potatoes and legumes, whereas animal products were the main source of calcium for 

omnivores (Larsson and Johansson, 2005). 

3.2. Dietary intake 

EFSA estimated dietary intake of calcium from food consumption data from the EFSA 

Comprehensive European Food Consumption Database (EFSA, 2011b), classified according to the 

food classification and description system FoodEx2 (EFSA, 2011a). Data from 13 dietary surveys in 

                                                      
6 Regulation (EC) No 1925/2006 of the European Parliament and of the Council of 20 December 2006 on the addition of 

vitamins and minerals and of certain other substances to foods. OJ L 404, 30.12.2006, p. 26. 
7 Directive 2002/46/EC of the European Parliament and of the Council of 10 June 2002 on the approximation of the laws of 

the Member States relating to food supplements. OJ L 183, 12.7.2002, p. 51. 
8 Commission Directive 2006/141/EC of 22 December 2006 on infant formulae and follow-on formulae and amending 

Directive 1999/21/EC. OJ L 401, 30.12.2006, p. 1. 
9 Commission Directive 2006/125/EC of 5 December 2006 on processed cereal-based foods and baby foods for infants and 

young children. OJ L 339, 6.12.2006, p. 16. 
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nine European Union (EU) countries were used. The countries included Finland, France, Germany, 

Ireland, Italy, Latvia, the Netherlands, Sweden and the UK. The data covered all age groups from 

infants to adults aged 75 years and older (Appendix A). 

Nutrient composition data for calcium were derived from the EFSA Nutrient Composition Database 

(Roe et al., 2013). Food composition information from Finland, France, Germany, Italy, the 

Netherlands, Sweden and the UK were used to calculate calcium intake in these countries, assuming 

that the best intake estimate would be obtained when both the consumption data and the composition 

data are from the same country. For nutrient intake estimates of Ireland and Latvia, food composition 

data from the UK and Germany, respectively, were used, because no specific composition data from 

these countries were available. The percentage of borrowed calcium values in the seven composition 

databases used varied between 15 and 78 %. EFSA intake estimates are based on consumption of 

foods, either fortified or not (i.e. without dietary supplements). Nutrient intake calculations were 

performed only on subjects with at least two reporting days. Data on infants were available from 

Finland, Germany, the UK and Italy. The contribution of human milk was taken into account if the 

amounts of human milk consumed (Italian INRAN SCAI survey and the UK DNSIYC survey) or the 

number of breast milk consumption events (German VELS study) were reported. In the case of the 

Italian INRAN SCAI survey, human milk consumption had been estimated based on the number of 

eating occasions using standard portions per eating occasion. In the Finnish DIPP study, only the 

information “breast-fed infants” was available, but without any indication of the number of breast milk 

consumption events during one day or the amount of breast milk consumed per event. For the German 

VELS study, the total amount of breast milk was calculated based on the observations by Paul et al. 

(1988) on breast milk consumption during one eating occasion at different ages, i.e. the amount of 

breast milk consumed on one eating occasion was set to 135 g/eating occasion for infants aged 6–7 

months and to 100 g/eating occasion for infants aged 8–12 months. 

Average calcium intake ranged between 307 and 584 mg/day (135–179 mg/MJ) in infants (aged 

between 1 and 11 months, four surveys), between 533 and 838 mg/day (125–192 mg/MJ) in children 

aged 1 to < 3 years (five surveys), between 589 and 986 mg/day (97–178 mg/MJ) in children aged 3 to 

< 10 years (seven surveys), between 675 and 1 273 mg/day (88–156 mg/MJ) in children aged 10 to 

< 18 years (six surveys) and between 690 and 1 122 mg/day (87–143 mg/MJ) in adults (≥ 18 years) 

(eight surveys). Average daily intakes were in most cases slightly higher in males (Appendix B) than 

in females (Appendix C), mainly as a result of larger quantities of food consumed per day. 

The main food group contributing to calcium intake was milk and dairy products. While liquid milk 

products (not including food products for the young population, such as infant formula) were the most 

important contributors to calcium intake in infants and young and older children, cheese was the main 

source of calcium in the older age groups. Grains and grain-based products also contributed 

significantly to calcium intake, probably at least partly owing to milk-based ingredients in the 

products. Differences in the main contributors to calcium intake between sexes were minor 

(Appendices D and E). 

EFSA’s calcium intake estimates in mg per day were compared with published intake values from the 

same survey and dataset and the same age class using the German EsKiMo and VELS surveys in 

children (Kersting and Clausen, 2003; Mensink et al., 2007), the DIPP study in Finnish children 

(Kyttälä et al., 2008; Kyttälä et al., 2010), the study in Finnish adolescents (Hoppu et al., 2010), the 

French national INCA2 survey (Afssa, 2009), the Irish NANS (IUNA, 2011), the FINDIET 2012 

Survey (Helldán et al., 2013), the Italian INRAN-SCAI Survey (Sette et al., 2011), the Dutch National 

Food Consumption Survey (van Rossum et al., 2011), the Swedish national survey Riksmaten 

(Amcoff et al., 2012), the DNSIYC-2011 Study in UK infants and toddlers (Lennox et al., 2013) and 

the UK NDNS (Bates et al., 2012) (Table 3). 
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 EFSA’s average daily calcium intake estimates, expressed as percentage of intake Table 3: 

reported in the literature 

Country Percentage of published intake  

(percentage range over different age classes in a specific survey) 

Finland  89 (DIPP young children 1 to < 3 years), 98 (DIPP children 3 to < 10 years), 100–101 (Finnish 

adolescents), 89–91 (FINDIET 2012) 

France 92–96 (INCA2) 

Germany 80–82 (VELS infants), 92–98 (VELS children), 84–95 (EsKiMo) 

Ireland  105–114 (NANS) 

Italy 94–100 (INRAN-SCAI) 

Netherlands 94–97 (Dutch National Food Consumption Survey) 

Sweden 109–112 (Riksmaten) 

UK 96 (DNSIYC), 94–99 (NDNS Rolling Programme, Years 1–3, children 10 to < 18 years), 101–

108 (NDNS Rolling Programme, Years 1–3, other age groups) 

When the EFSA intake estimates were compared with published intake estimates from the same 

survey and age range, the EFSA estimates differed by up to 10 % from the published values in all 

countries and surveys, except for the Irish and Swedish national surveys, where EFSA intake estimates 

were higher by up to 12–14 %, and for German VELS infants and EsKiMo children, where EFSA 

intake estimates were lower by up to 16–20 %. For young children of the DIPP and for children of the 

EsKiMo study, the underestimation can partly be explained by the fact that both the DIPP and the 

EsKiMo study included calcium supplement consumption in their data. The contribution of the 

supplements has, however, been reported to be minor compared with the calcium intake from foods 

(Mensink et al., 2007; Kyttälä et al., 2008). Overall, several sources of uncertainties may contribute to 

these differences, including inaccuracies in mapping food consumption data according to the FoodEx2 

classification and in nutrient content estimates available from the food composition tables, the use of 

borrowed calcium values from other countries in the food composition database, and the replacing of 

missing calcium values with values of similar foods or food groups in the calcium intake estimation 

process. It is not possible to conclude which of these intake estimates would be closer to the actual 

calcium intake. 

4. Overview of Dietary Reference Values and recommendations 

4.1. Adults 

The German-speaking countries (D-A-CH, 2015) considered results of a pooled analysis of calcium 

balance studies with 82 men and 73 women (Hunt and Johnson, 2007) and assumed that the calcium 

intake associated with null balance in that study is equivalent to the Average Requirement (AR). For 

deriving the PRI, 30 % was added to the AR of 741 mg/day to take into account the variation in 

calcium requirement in the population. The PRI of 1 000 mg/day was set for all adults, as there was no 

clear evidence that a higher calcium intake leads to a lower reduction in bone density in 

postmenopausal women or a lower fracture risk in adults over 65 years of age. 

For adults aged 19–50 years, the US Institute of Medicine (IOM, 2011) set an Estimated Average 

Requirement (EAR) of 800 mg/day and a Recommended Dietary Allowance (RDA) of 1 000 mg/day, 

based on calcium balance data (Hunt and Johnson, 2007) showing null calcium balance at an intake of 

741 mg/day (rounded up to obtain the EAR), with the upper limit of the 95 % confidence interval (CI) 

of 1 035 mg/day (rounded to obtain the RDA). For adults aged 51–70 years, the main indicator for the 

setting of the RDA was the degree of bone loss. For men, IOM considered the data of Hunt and 

Johnson (2007), although only two men over 50 years of age were included: there was no evidence of 

changes in skeletal maintenance in men of that age, hence no reason was seen to have a different RDA 

than in younger adults. For women aged 51–70 years, the data of Hunt and Johnson (2007) were also 

considered, although there was no stratification on the basis of menopausal status, while about half of 

the included women were over 50 years of age. Data on BMD (Jackson et al., 2006; Tang et al., 2007), 

which was judged to be a reliable predictor of fracture risk later in life, were also taken into account, 
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while data on fracture risk in this population group were not considered relevant. The earlier bone loss 

in women than in men, due to the onset of menopause, was taken into account, as was the considerable 

variability in the age of onset of menopause. An EAR of 1 000 mg and an RDA of 1 200 mg/day were 

derived. For adults over 70 years of age, the lack of calcium balance data was stressed and data on 

fracture risk were taken into account (Peacock et al., 2000; Grant et al., 2005; Prince et al., 2006; Tang 

et al., 2007), although it was noted that the results were inconsistent, that there was limited evidence of 

a dose–response relationship and that there was a lack of information on background calcium intake. 

IOM concluded that bone loss was similar in both sexes at this age. An EAR of 1 000 mg/day and an 

RDA of 1 200 mg/day were set for both sexes. 

The World Health Organization (WHO/FAO, 2004) used data from 210 calcium balance experiments 

(n = 81 subjects; duration between 6 and 480 days, mean of 90 days) (Steggerda and Mitchell, 1939; 

Owen et al., 1940; Steggerda and Mitchell, 1941, 1946; Johnston et al., 1952; Bogdonoff et al., 1953; 

Malm, 1958; Clarkson et al., 1970) to derive regression curves on the relationship between (1) urinary 

calcium excretion and calcium intake, and (2) net absorbed calcium and ingested calcium. Both 

approaches yielded a mean apparent calcium requirement of about 520 mg/day. After adding the 

insensible calcium losses (60 mg) to this value, the intercept between the curve of net absorbed 

calcium and the regression line of urinary calcium increased to 840 mg/day. Thus, the recommended 

intake for premenopausal women and men up to 65 years of age was set at 1 000 mg/day. Menopause 

was considered to raise urinary calcium by about 30 mg/day (Nordin and Polley, 1987; Prince et al., 

1995; Nordin et al., 1999), but not to increase calcium absorption (Heaney et al., 1989; Nordin, 1997). 

WHO/FAO reported on 20 prospective trials in 857 postmenopausal women and 625 controls showing 

a suppression of bone loss after calcium supplementation (Nordin, 1997), as well as a meta-analysis 

showing that calcium supplementation significantly enhanced the anabolic effect of oestrogen on bone 

(Nieves et al., 1998). For postmenopausal women, the AR was set at 1 100 mg/day and the 

recommended intake was set at 1 300 mg/day. Calcium absorption was considered to decrease with 

age in both sexes (Morris et al., 1991; Ebeling et al., 1994; Need et al., 1998). Despite the existence of 

stronger evidence for an increased calcium requirement in postmenopausal women compared with 

men (Owen et al., 1940; Bogdonoff et al., 1953), as a precautionary measure, the same recommended 

intake as for postmenopausal women was set for men aged 65 years and older. 

The Nordic countries (Nordic Council of Ministers, 2004) set the recommended intake at 800 mg/day, 

for both sexes, based on studies indicating that men with an intake of about 800 mg/day had a lower 

incidence of hip fracture than men with about half that intake (Matkovic et al., 1979; Cooper et al., 

1988; Holbrook et al., 1988), that bone density of the lumbar vertebrae and upper femur was 

correlated with calcium intake in men (Kelly et al., 1990) and that a high supplemental intake of 

calcium may reduce fracture incidence in men (Horowitz et al., 1994). For postmenopausal women, it 

was noted that long-term balance studies had not been performed and that supplementation with 

calcium in osteoporotic patients had resulted in some reduction in bone loss in late menopausal 

women (Reid et al., 1993, 1995), but that the oestrogen deficiency-related bone loss observed early 

after menopause was not appreciably altered by calcium supplementation. For the Nordic Nutrition 

Recommendations (NNR) 2012, the main basis was the systematic review by Uusi-Rasi et al. (2013), 

which evaluated a number of studies on associations between calcium intake and different health 

outcomes. The recommended intake of 800 mg/day from NNR 2004 was maintained for adults over 20 

years of age, as no strong evidence has emerged to justify a change (Nordic Council of Ministers, 

2014). The recommended intake of adolescents of 900 mg/day was extended to young adults, noting 

that some bone mass is still accreted beyond 17 years of age and that the increased demand for 

calcium is also reflected in a higher absorption efficiency up to the age of 24 years. 

The French Food Safety Agency (Afssa, 2001) applied the factorial method and considered daily 

obligatory losses in urine (130 mg), faeces (110 mg) and sweat (20 mg) (Spencer et al., 1986; Charles 

et al., 1991; Lemann, 1993; Heaney and Recker, 1994). The minimum maintenance requirement was 

estimated to be 260 mg/day for adults, 280 mg/day for women over 55 years and men over 65 years of 

age. Calcium absorption was assumed to be 35–40 % in younger adults, taking into account calcium 

absorption from diets with almost no dairy products and providing about 500 mg/day of calcium, and 
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30 % for women over 55 years and men over 65 years of age (Weaver, 1994). Afssa noted that the 

average calcium intake yielding a positive or null balance in 50 % of subjects was shown to be below 

650 mg/day in one balance study (Marxhall et al., 1976) and set an AR of 690 mg/day and a PRI of 

900 mg/day for women up to 55 years and men up to 65 years of age. For women over 55 years and 

men over 65 years of age, the AR was set at 930 mg/day and the PRI was calculated as 1.3 (coefficient 

of variation (CV) = 15 %) times the AR, i.e. 1 200 mg/day. 

For adults aged 19–30 years, the Health Council of the Netherlands (2000) used the factorial method 

and estimated faecal calcium losses to be 110 mg/day (Heaney and Recker, 1982; Spencer et al., 

1984), urinary losses to be 140 mg/day (Melvin et al., 1970; Marxhall et al., 1976; Matkovic, 1991), 

skin losses to be 30 mg/day (Allen et al., 1979; Charles et al., 1983; Peacock, 1991) and the average 

total loss to be 280 mg/day based on studies in which the average calcium intake was about 

500 mg/day. The Council noted that 92–95 % of PBM is already achieved at 18–20 years of age and 

100 % is achieved 10 years later (Recker et al., 1992; Matkovic et al., 1994; Teegarden et al., 1995), 

and estimated calcium retention to be 10 mg/day (American Academy of Pediatrics. Committee on 

Nutrition, 1978). Assuming calcium absorption to be 30–40 %, a value of 730–970 mg/day was 

derived. The Council considered that the results of the balance and observational studies (Matkovic 

and Heaney, 1992) supported the results from the factorial method, and concluded on an Adequate 

Intake (AI) of 1 000 mg/day. No reason was identified to expect different calcium losses and 

absorption in adults aged 31–50 years, for which balance studies showed an equilibrium at an intake of 

1 000 mg/day (Heaney et al., 1975; Heaney et al., 1977, 1978a, 1978b). The Council considered that 

calcium absorption is reduced with age and after menopause (Avioli et al., 1965; Ireland and Fordtran, 

1973; Recker et al., 1988; Heaney et al., 1989; Ebeling et al., 1994; Heaney, 1995; Kinyamu et al., 

1997; Ensrud et al., 2000), that balance studies supported an AI of 1 200 mg/day for adults aged 51–70 

years and that intervention and observational studies in relation to bone mass, bone loss or fracture 

risk supported an AI of 1 000–1 200 mg/day for this age range. Hence, an AI of 1 100 mg/day was set 

for adults aged 51–70 years. For adults aged 71 years and over, the Council considered that the 

factorial estimate would be higher and set an AI of 1 200 mg/day. 

The Scientific Committee for Food (SCF, 1993) and the UK Committee on Medical Aspects of Food 

Policy (COMA) (DH, 1991) derived a PRI (or Reference Nutrient Intake, RNI) of 700 mg/day for 

adults including older adults. Using the factorial approach, calcium losses via urine, sweat, faeces, hair 

and nails (160 mg/day) and a calcium absorption of 30 % were used to set the AR, to which twice its 

standard deviation (SD) was added. The Lower Threshold Intake (or Lower RNI) was set at 

400 mg/day. An overview of DRVs for calcium for adults is given in Table 4. 

 Overview of Dietary Reference Values for calcium for adults Table 4: 

 D-A-CH 

(2015) 

NCM 

(2014) 

IOM 

(2011) 

WHO/FAO  
(2004) 

Afssa 

(2001) 

NL 

(2000)
(a)

 

SCF 

(1993) 

DH 

(1991) 

Age (years) ≥ 19 18–20 19–50 19–65 (M) 

19–menopause (F) 

20–65 (M) 

20–55 (F) 

19–50 ≥ 18 ≥ 19 

PRI 
Men (mg/day) 1 000 900 1 000 1 000 900 1 000 700 700 

Women (mg/day) 1 000 900 1 000 1 000 900 1 000 700 700 

Age (years)  ≥ 21 51–70 > 65 (M), 

postmenopausal (F) 

≥ 66 (M), 

≥ 56 (F) 

51–70   

PRI       
  

Men (mg/day)  800 1 000 1 300 1 200 1 100 
  

Women (mg/day)  800 1 200 1 300 1 200 1 100 
  

Age (years)   ≥ 70   ≥ 70   

PRI       
  

Men (mg/day)   1 200   1 200 
  

Women (mg/day)   1 200   1 200 
  

F, females; M, males; NCM, Nordic Council of Ministers; NL, Health Council of the Netherlands; PRI, Population Reference Intake. 

(a): Adequate Intake. 
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4.2. Children and adolescents 

For infants aged 4 to < 12 months, D-A-CH (2015) estimated a calcium intake of 188.5 mg/day from 

650 mL of breast milk and of 140 mg/day via complementary foods (IOM, 2011). Thus, after 

rounding, an AI of 330 mg/day was set. Calcium requirements of children were estimated factorially, 

assuming a calcium retention of 140 mg/day for children aged 1 to < 4 years (Lynch et al., 2007), 

120 mg/day for children aged 4 to < 7 years (Ames et al., 1999) and 150 mg/day for those aged 7 to 

< 10 years (Ellis et al., 1996; Abrams et al., 1999; IOM, 2011). Urinary calcium losses were assumed 

to amount to 37, 45 and 55 mg/day for these three age groups, respectively (Weaver, 1994), and 

endogenous faecal losses were estimated as 37, 40 and 50 mg/day, respectively (Abrams et al., 1991; 

Weaver, 1994). No sweat calcium losses were assumed for children aged 1 to < 4 years, whereas those 

aged 4 to < 7 years and 7 to < 10 years were estimated to have sweat calcium losses of 30 and 

40 mg/day, respectively (Weaver, 1994). Summing up losses and the requirement for calcium 

retention, ARs were derived by assuming a calcium absorption of 45.6 % for children aged 1 to < 4 

years (Lynch et al., 2007) and 38 % for those aged 4 to < 7 years and 7 to < 10 years (Wastney et al., 

1996). The factorial approach was also used for older children and adolescents, assuming calcium 

retention based on the findings by Vatanparast et al. (2010). Urinary calcium losses (Abrams et al., 

1997b), endogenous faecal losses (Abrams et al., 1991; Weaver, 1994; Abrams et al., 1997b) and 

sweat losses (Weaver, 1994; Palacios et al., 2003) were also taken into account. Owing to differences 

in the timing of the pubertal growth spurt, a calcium absorption of 38 % was assumed for boys aged 10 

to < 13 years and girls aged 13 to < 19 years (Wastney et al., 1996), and of 42 % for girls aged 10 to 

< 13 years and boys aged 13 to < 19 years (Jackman et al., 1997; Braun et al., 2006). For all children, 

PRIs were derived by adding 20 % to the ARs. 

IOM (2011) set an AI for infants aged 7–12 months based on the assumption that the calcium 

requirement of infants is met by human milk. Taking into account data on mean intake of human milk 

(0.6 L/day during the second six months of life) (Dewey et al., 1984), mean calcium concentration of 

breast milk (about 200 mg/L during this stage of lactation) (Atkinson et al., 1995), calcium absorption 

(60 %) and retention (about 100 mg/day during the first year of life) and the additional intake of 

calcium from complementary foods (140 mg/day in formula-fed infants, assumed to be similar in 

breast-fed infants at that age), the AI was set at 260 mg/day. For children, IOM followed the factorial 

method. For children aged 1–3 years, an EAR of 500 mg/day (after rounding) and an RDA of 

700 mg/day were set, based on average calcium retention (142 mg/day), urinary losses (34 mg/day), 

faecal losses (40 mg/day) and a calcium absorption of 46 % in this population (Lynch et al., 2007). For 

children aged 4–8 years, the EAR was set at 800 mg/day and the RDA at 1 000 mg/day, based on an 

increased calcium retention due to pre-puberty (140–160 mg/day), urinary losses (40 mg/day), faecal 

losses (50 mg/day) and a calcium absorption of 30 % (Abrams et al., 1999; Ames et al., 1999). For 

children aged 9–18 years, IOM used data on average calcium retention (92–210 mg/day depending on 

age and sex), urinary losses (106 mg/day in girls, 127 mg/day in boys), faecal losses (112 mg/day in 

girls, 105–108 mg/day in boys depending on the age considered), sweat losses (55 mg/day) and a 

calcium absorption of 38 % (Vatanparast et al., 2010). The variability in the onset of puberty and the 

pubertal growth spurt was considered small. The EAR was set at 1 100 mg/day based on interpolation 

of the calcium intake needed to achieve the average calcium retention estimated for girls and boys 

aged 9–18 years (Vatanparast et al., 2010), and an RDA of 1 300 mg/day was set for both sexes. 

WHO/FAO (2004) estimated calcium retention for infants aged 7–12 months to be about 100 mg/day, 

urinary calcium excretion to be about 10 mg/day (Widdowson et al., 1963; Widdowson, 1965; Hanna 

et al., 1970; Williams et al., 1970; Shaw, 1976) and insensible losses to be about 10 mg/day. Thus, the 

required quantity of absorbed calcium was assumed to be 120 mg/day. Calcium absorption from cow’s 

milk was considered to be lower than that from human milk, and about 0.5 SD above the normal adult 

slope of calcium absorption according to intake (see Section 4.1). From these curves and the value of 

120 mg/day, WHO/FAO derived an AR of about 300 mg/day and a recommended intake of 

400 mg/day for infants aged 7–12 months. For children aged 2–9 years, calcium retention was 

considered to be about 120 mg/day based on data on total body DXA and calculations from growth 

analyses (Leitch and Aitken, 1959). To this value, average daily urinary calcium losses of 60 mg 
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(Matkovic, 1991) and dermal losses of 40 mg were added, resulting in an average required quantity of 

absorbed calcium of 220 mg/day. Considering a net absorption of calcium by children of 1 SD above 

that of adults (see Section 4.1), the AR was considered to be 440 mg/day and the recommended intake 

to be 600 mg/day in children aged 4–6 years, somewhat lower in young children aged 1–3 years 

(500 mg/day) and somewhat higher in children aged 7–9 years (700 mg/day). For adolescents, 

considering the increased calcium retention (300 mg/day) (Leitch and Aitken, 1959), and urinary 

(100 mg/day) (Matkovic, 1991) and dermal calcium losses (40 mg/day), the required quantity of 

absorbed calcium during at least part of adolescence was set at 440 mg/day. A higher absorption 

(+2 SD above that of adults) was taken into consideration; thus, the AR was set at 1 040 mg/day and 

the recommended intake was set at 1 300 mg/day for both sexes during the peak growth phase. 

The Nordic Countries (Nordic Council of Ministers, 2004) recommended a calcium intake of 

600 mg/day for children aged 1–5 years, which was assumed to ensure a calcium retention of about 

60–200 mg/day observed in children aged 1–8 years based on DXA estimation of BMC. For puberty, 

calcium retention was considered to be much higher. Calcium supplementation was reported to be 

associated with increased bone density up to puberty. Adaptation to an increased calcium requirement 

(Weaver et al., 1995; O'Brien et al., 1996) and efficient calcium absorption were noted and a calcium 

intake of 900 mg/day recommended for children aged 10–17 years. The possible inhibitory effect on 

iron absorption of a higher calcium intake was mentioned (Cook et al., 1991; Hallberg et al., 1991). 

The recommended intakes for infants and children of all ages remained unchanged for NNR 2012 

(Nordic Council of Ministers, 2014). 

The French Food Safety Agency (Afssa, 2001) followed the factorial method. The minimum 

maintenance requirement was considered to be the same in adolescents aged 15–18 years as in adults 

(i.e. 260 mg/day). It was considered to vary with body weight, and thus to be 50 mg/day in children 

aged 1–3 years and 100 mg/day in those aged 4–9 years (Abrams et al., 1991; Matkovic and Ilich, 

1993). The requirement for growth depending on age was estimated to be 90 mg/day (1–3 years), 

140 mg/day (4–9 years), 250 mg/day (10–14 years) and 100 mg/day (15–18 years) (Comar and 

Bronner, 1964; Peacock, 1991; Fomon and Nelson, 1993; Chan et al., 1995; Ruiz et al., 1995; Bonjour 

et al., 1997). Absorption was assumed to be 40 % in children aged 1–9 and 15–18 years, and 45 % in 

children aged 10–14 years. Hence, the ARs were set at 350 mg/day (1–3 years), 600 mg/day (4–9 

years), 930 mg/day (10–14 years) and 920 mg/day (15–18 years), and the PRIs were calculated from 

the ARs considering twice a CV of 15 %. 

Using the factorial method, the Health Council of the Netherlands (2000) estimated calcium losses to 

be 60 mg/day and calcium retention to be 100 mg/day for infants aged 6–11 months. An AI of 

450 mg/day was derived based on a calcium absorption of about 50 % and adding to the requirement 

of 320 mg/day 2 SD. For children aged 1–3 years, losses were estimated to be 80 mg/day, retention to 

be 100 mg/day (Fomon et al., 1982; Matkovic, 1991) and the AI to be 500 mg/day (Matkovic, 1991; 

Matkovic and Heaney, 1992). For children aged 4–8 years, losses were considered to be 130 mg/day 

and retention to be 100 mg/day. Assuming a calcium absorption of 50 %, an intake of 460 mg/day was 

considered necessary. Taking into account data from balance studies and intervention studies with a 

sufficiently long duration, the Council set an AI of 700 mg/day. For children aged 9–18 years, calcium 

losses were considered to be about 220–230 mg/day (Greger et al., 1978; Matkovic, 1991; Weaver et 

al., 1995; O'Brien et al., 1996; Wastney et al., 1996; Abrams et al., 1997b) and calcium retention to be 

about 160–210 mg/day (Mazess, 1973; American Academy of Pediatrics. Committee on Nutrition, 

1978; Fomon et al., 1982). Considering calcium absorption to be about 35–50 %, the Council set an AI 

of 1 200 mg/day for boys and of 1 100 mg/day for girls aged 9–18 years. 

For infants aged 6–11 months, because of a lack of data, the SCF (1993) proposed the PRI for children 

aged 1–3 years, i.e. 400 mg/day. The UK COMA (DH, 1991) considered for infants aged 0–12 months 

a calcium requirement for retention of 160 mg/day, an absorption efficiency of 40 % from infant 

formula and consequently an EAR and an RNI of 400 mg/day and 525 mg/day, respectively. For 

children between 1 and 10 years of age, the SCF (1993) and the UK COMA (DH, 1991) used the 

factorial approach and an estimated calcium retention of 70–150 mg/day (Leitch and Aitken, 1959) 
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and a net absorption of 35 %, and considered 2 SD to cover individual variation. For adolescents, a 

mean retention of 250 mg/day (girls) and 300 mg/day (boys) and a net absorption of 40 % were 

assumed, and adding 30 % for individual variation, the PRIs (or RNIs) for girls and boys aged 11–17 

(or 18) years were set at 800 mg/day and 1 000 mg/day, respectively. 

An overview of DRVs for calcium for children is given in Table 5. 

 Overview of Dietary Reference Values for calcium for children Table 5: 

 D-A-CH 

(2015) 

NCM 

(2014) 

IOM 

(2011) 

WHO/FAO 

(2004) 

Afssa 

(2001) 

NL 

(2000) 
(a)

 

SCF 

(1993) 

DH  
(1991) 

Age (months) 4–< 12 6–11 6–12 7–12  6–11 6–11 0–12 

PRI (mg/day) 330 540 260 
(a) 

400  450 400 525 

Age (years) 1–< 4 1–5 1–3 1–3 1–3 1–3 1–3 1–3 

PRI (mg/day) 600 600 700 500 500 500 400 350 

Age (years) 4–< 7 6–9 4–8 4–6 4–6 4–8 4–6 4–6 

PRI (mg/day) 750 700 1 000 600 700 700 450 450 

Age (years) 7–< 10 10–17 9–18 7–9 7–9 9–18 7–10 7–10 

PRI (mg/day) 900 900 1 300 700 900 1 200 (M) 

1 100 (F) 

550 550 

Age (years) 10–< 13   10–18 10–19  11–17 11–18 

PRI (mg/day) 1 100   1 300 1 200  1 000 (M) 

800 (F) 

1 000 (M) 

800 (F) 

Age (years) 13–< 19        

PRI (mg/day) 1 200        

F, females; M, males; NCM, Nordic Council of Ministers; NL, Health Council of the Netherlands; PRI, Population Reference 

Intake. 

(a): Adequate Intake. 

4.3. Pregnancy and lactation 

D-A-CH (2015) considered that pregnancy is associated with a doubling of calcium absorption, an 

increase in urinary calcium excretion and some bone resorption, but that these physiological 

adaptations are transient. In addition, it was stated that interventions with calcium have not shown a 

benefit of calcium supplementation during pregnancy (Koo et al., 1999). The German-speaking 

countries considered that a higher calcium intake during lactation does not prevent the loss of calcium 

from bone or influence the calcium concentration of human milk. The recommended intake for 

pregnant and lactating women was therefore the same as for non-pregnant non-lactating women, i.e. 

1 000 mg/day for adults and 1 200 mg/day for adolescents. 

For pregnant women and adolescents, IOM (2011) used the same EARs and RDAs as for non-

pregnant women and adolescents, as randomised controlled trials did not show that calcium 

supplementation (beyond non-pregnant requirements) during pregnancy would be beneficial to the 

mother or fetus (Koo et al., 1999; Jarjou et al., 2010). It was also stated that parity may be associated 

with a neutral or even protective effect on maternal BMD or fracture risk based on observational 

studies (Sowers, 1996; Kovacs and Kronenberg, 1997; O'Brien et al., 2003; Chantry et al., 2004), and 

that fractional calcium absorption doubles during pregnancy and compensates for the increased 

calcium transferred to the fetus (200–250 mg/day). For lactating adults and adolescents, the EARs and 

RDAs of non-lactating women and adolescents were also considered appropriate. This was based on 

evidence that the calcium concentration of human milk is not affected by intake (Kalkwarf et al., 1997; 

Jackson et al., 2006), that the transient maternal bone resorption observed in lactating women 

(Kalkwarf et al., 1997; Specker et al., 1997; Kalkwarf, 1999) is not suppressed by an increased 

calcium intake (Cross et al., 1995; Fairweather-Tait et al., 1995; Prentice et al., 1995; Kalkwarf et al., 

1997; Laskey et al., 1998; Polatti et al., 1999), that maternal bones are restored after lactation without 

additional calcium intake (Cross et al., 1995; Prentice et al., 1995) and that there is no evidence 

suggesting that lactation impairs achievement of PBM in adolescents (Chantry et al., 2004). 
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WHO/FAO (2004) reported the calcium content of the newborn infant to be about 24 g, most of which 

is laid down in the last trimester of pregnancy during which the fetus retains about 240 mg/day 

(American Academy of Pediatrics. Committee on Nutrition, 1978). Using the factorial approach, 

WHO/FAO considered an increased calcium absorption during pregnancy (Heaney and Skillman, 

1971; Kumar et al., 1979; Kent et al., 1991), maternal urinary calcium losses of 120 mg/day and 

dermal losses of 60 mg/day, giving a total requirement for absorbed calcium of 420 mg/day. 

Considering an absorption of +2 SD above that of non-pregnant non-lactating adults, the 

corresponding AR was set at 940 mg/day, and the recommended intake at 1 200 mg/day. For lactating 

women, WHO/FAO considered daily calcium losses via milk of about 280 mg based on a calcium 

concentration in human milk of 360 mg/L (Nordin, 1976) and a secreted amount of about 0.75 L/day. 

Maternal urinary calcium excretion was considered to be 100 mg/day, and maternal skin losses to be 

60 mg/day, giving total losses of 440 mg/day. WHO/FAO stated that calcium absorption does not 

increase and possibly even decreases during lactation and that lactational bone loss is not affected by 

calcium intake (Sowers et al., 1996). Thus, no extra calcium allowance was set for lactating women. 

The Nordic countries (Nordic Council of Ministers, 2004) recommended the same calcium intake of 

900 mg/day for pregnant and lactating women as for non-pregnant non-lactating women. It was noted 

that calcium absorption increases during pregnancy (Shenolikar, 1970; Heaney and Skillman, 1971), 

that calcium supplementation does not influence calcium retention (Ashe et al., 1979) and that dietary 

calcium intake in the Nordic countries is already about 800–1 000 mg/day. It was also noted that 

calcium supplementation does not alter the percentage of absorption (Fairweather-Tait et al., 1995; 

Kalkwarf et al., 1997), that bone resorption increases during lactation (Affinito et al., 1996), that there 

is renal conservation of calcium (Specker et al., 1994), that these adaptive changes are not influenced 

by calcium intake and that bone loss is regained when ovarian function and menstruation resume. This 

recommendation was maintained in NNR 2012, as no strong evidence has emerged to justify a change 

(Nordic Council of Ministers, 2014). 

The French Food Safety Agency (Afssa, 2001) followed the factorial approach. For pregnant women, 

the minimum maintenance requirement was assumed to be lower than for non-pregnant women, i.e. 

200 mg/day, owing to a higher intestinal absorption of endogenous calcium. The fetus was considered 

to retain about 20 g of calcium during the last trimester of pregnancy, i.e. on average 220 mg/day. 

Based on a calcium absorption of 55 % for pregnant women (Kent et al., 1991), the AR was calculated 

as 760 mg/day and the PRI was set at 1.3 (CV = 15 %) times the estimated AR, i.e. 1 000 mg/day, for 

pregnant women in the third trimester. A calcium concentration in human milk of 320 mg/L and a 

daily volume of 0.8 L were taken into account to estimate calcium losses of 250 mg/day during 

lactation (Lönnerdal, 1997). For lactating women, the minimum maintenance requirement was 

assumed to be lower than for non-pregnant women, i.e. 200 mg/day, owing to the reduction in urinary 

calcium excretion. Based on a calcium absorption of 45 % (Kent et al., 1991; Kalkwarf et al., 1996), 

the AR was calculated as 1 000 mg/day, which was also the value chosen as the PRI, considering that 

losses of bone mass during breastfeeding would be later compensated by an increased bone retention 

(Drinkwater and Chesnut, 1991; Specker et al., 1991; Sowers et al., 1993; Prentice, 1994; Cross et al., 

1995; Laskey et al., 1998; Ritchie et al., 1998). Afssa also derived a PRI for women after the 

breastfeeding period; considering a calcium retention of 200 mg/day to restore bone calcium content 

and a calcium absorption of 50 %, an AR of 800 mg/day was derived and the PRI set at 1.3 

(CV = 15 %) times the estimated AR, i.e. 1 000 mg/day to be applied for the same number of months 

as those of breastfeeding. 

The Health Council of the Netherlands (2000) considered that pregnant women do not need to increase 

their calcium intake (Allen, 1982; Schaafsma, 1992; IOM, 1997). It was reported that the number of 

pregnancies was either not correlated with maternal bone density or fracture risk later in life 

(Cumming et al., 1997; IOM, 1997) or not associated with a higher bone density (Aloia et al., 1983) 

and a lower fracture risk (Hoffman et al., 1993). The same calcium intake as for non-pregnant women 

was also proposed for lactating women, as there was no clear indication that a higher intake would be 

beneficial (Prentice, 2000). 
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For pregnant women, the SCF (1993) and the UK COMA (DH, 1991) considered that the calcium 

required for fetal growth is provided through an increased absorption and the mobilisation of calcium 

from maternal bone (Purdie, 1989), and set the same PRI as for non-pregnant women. For lactating 

women, the SCF (1993) proposed an additional calcium intake of 500 mg/day for the calcium required 

in milk, assuming an absorption of 40 % and adding 2 SD. The additional calcium intake proposed by 

the UK COMA (DH, 1991) was estimated by taking into account an amount of calcium secreted with 

breast milk of 300 mg/day, assuming an absorption of 40 % and also considering that the EAR of 

lactating women is lower than that of non-lactating adults (400 mg/day instead of 525 mg/day). 

An overview of DRVs for calcium for pregnant and lactating women is given in Table 6. 

 Overview of Dietary Reference Values for calcium for pregnant and lactating women Table 6: 

 D-A-CH 

(2015) 

NCM 

(2014) 

IOM 

(2011) 

WHO/FA

O (2004) 

Afssa 

(2001) 

NL 

(2000) 

SCF 

(1993) 

DH  
(1991) 

Pregnancy 

PRI 

(mg/day) 

As for non-

pregnant 

women 

900 As for non-

pregnant 

women 

1 200 1 000 

(third 

trimester) 

As for non-

pregnant 

women 

As for non-

pregnant 

women 

As for non-

pregnant 

women 

Lactation 

PRI 

(mg/day) 

As for non-

pregnant 

women 

900 As for non-

pregnant 

women 

As for non-

pregnant 

women 

1 000 As for non-

pregnant 

women 

≥ 500, i.e. 

1 200 

+550 

After lactation 

PRI 

(mg/day) 

    1 000 
(a)

    

NCM, Nordic Council of Ministers; NL, Health Council of the Netherlands; PRI, Population Reference Intake. 

(a): For the same number of months as those of breastfeeding. 

5. Criteria (endpoints) on which to base Dietary Reference Values 

5.1. Indicators of calcium requirement 

Although there are no direct biomarkers of calcium status (see Section 2.4.2), the role that calcium 

plays in skeletal health provides a basis for deriving DRVs. The quantity of dietary calcium that is 

sufficient for bone growth and turnover and to replace obligatory body losses in 50 % of the 

population is the criterion upon which the AR is based. For extraskeletal outcomes (see Sections 5.5.2 

and 5.5.3), the evidence is inconsistent and causality is inconclusive so these cannot be used for 

deriving DRVs for calcium. 

5.2. Calcium balance in adults 

Balance studies are based on the assumption that a healthy subject on an adequate diet maintains an 

equilibrium or a null balance between nutrient intakes and nutrient losses: at this null balance, the 

intake matches the requirement determined by the given physiological state of the individual. When 

intakes exceed losses (positive balance), there is nutrient accretion that may be attributable to growth 

or to weight gain, anabolism or repletion of stores; when losses exceed intakes (negative balance), 

nutrient stores are progressively depleted resulting, in the long term, in clinical symptoms of 

deficiency. In addition to numerous methodological concerns about the accuracy and precision in the 

determination of intakes and losses (Baer et al., 1999), the validity of balance studies for addressing 

requirements has been questioned: they might possibly reflect only adaptive changes before reaching a 

new steady state (Young, 1986) or only the conditions for maintenance of nutrient stores in the context 

of a given diet, and the relevance for health of the size of the pools still needs to be established for 

each nutrient (Mertz, 1987).  

There is a positive correlation between calcium balance and intake at lower levels of intake which 

reaches a plateau at higher levels of intake (Matkovic and Heaney, 1992). Once requirements for bone 
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growth and turnover are satisfied, any additional absorbed calcium will be excreted in the urine. The 

value at which the plateau occurs depends on age because of differences in calcium requirements for 

bone growth (the effect of sex is unknown because data from males and females from birth to 30 years 

of age were combined for the regression analysis). Ascertaining values for the threshold value in 

different population groups was attempted by Matkovic and Heaney (1992), but small sample size, 

high inter-individual variation and the inherent imprecision in balance data made it impossible to 

derive accurate values. 

In order to provide figures that could be used to establish calcium requirements for the North 

American Dietary Reference Intakes, balance data from well-controlled metabolic studies, collected in 

155 adults (73 women and 82 men) aged 19–75 years with different levels of calcium intake (ranging 

from 415 to 1 740 mg/day) and intakes of sodium and protein typical for diets consumed in 

industrialised countries, were collated and analysed (IOM, 2011). Only studies with balance periods of 

≥ 18 days (following a minimum equilibration period of 7 days) were included to allow sufficient time 

for physiological adaptation to take place according to the level of intake, and calcium intake and 

excretion during the final 6–12 days of each metabolic balance period were measured accurately by 

chemical analysis. The participants were apparently healthy people, living in North America, and with 

no evidence of osteomalacia. The data were combined and the relationship between intake and 

excretion was examined by fitting random coefficient models. The models predict a null calcium 

balance at a calcium intake of 741 mg/day, irrespective of age or sex (Hunt and Johnson, 2007). 

The same balance data from the studies which were used to derive Dietary Reference Intakes for North 

American adults were further analysed by EFSA (see Appendix F), with some important differences. 

First, data from additional studies in which calcium supplements were given (not included in the 

analysis by Hunt and Johnson (2007)) were added to the database, which resulted in data from a total 

of 27 studies being analysed. Second, individual data from younger adults (< 25 years) were excluded, 

as there is evidence that additional calcium continues to be deposited in bones after they have ceased 

growing (Teegarden et al., 1995; Ohlsson et al., 2011; Darelid et al., 2012), which is dependent on 

bone site (Recker et al., 1992; Hui et al., 1999). The Panel notes that calcium metabolism cannot be 

considered in a steady state until the age of 25 years (see Section 2.3.4). 

EFSA applied a mixed linear model (Brown and Prescott, 1999) to establish the dietary calcium intake 

able to predict a null balance for half the population (Appendix F). It was assumed that, in order to be 

representative of a healthy population, the range of average individual values for calcium balance in 

any one study should include zero. After excluding data from studies that did not meet this criterion, a 

total of 170 individuals (females and males) and 378 observations were considered in the final 

analysis. Outliers (six extreme observations) were removed, leaving 169 subjects (110 women aged 

25–81 years, 59 men aged 25–65 years) and 372 observations in total (229 for females and 143 for 

males). The effects of age, sex and body weight were not significant, so they were removed from the 

final model, which contained calcium intake as the only explanatory variable. The mean intake of 

calcium at which intake equals excretion (null balance) was 715 mg/day. The PRI is defined as the 

level of intake that is adequate for 97.5 % of subjects in a population group. This parameter is 

estimated via the upper bound of the marginal prediction interval at the level corresponding to a null 

balance for the population mean. The 95 % marginal prediction interval is the estimate of the 

individual values in a population provided by the model with 95 % confidence. Its upper bound 

represents the 97.5
th
 percentile of the distribution of the individual predictions for each level of the 

predictor (dietary calcium intake) at the population average random effects. This prediction interval 

upper bound at the level of calcium null balance for the population mean is equal to 904 mg/day 

(lower bound at 525 mg/day). The Panel considers that calcium excretion used in the model is an 

underestimate because dermal calcium losses were not measured in the metabolic studies. The extent 

of underestimation would depend on the type and extent of physical activity by the subjects during the 

study periods, which varied considerably as indicated in the publications of the individual studies, and 

no information on this was provided to EFSA. The Panel considers that the range of values for the 

dietary calcium intake and excretion reflects the situation in the EU. The Panel also considers that it is 
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not appropriate to conclude on the representativeness of dietary consumption patterns, age and sex 

composition, because of the lack of data and the relatively small sample size. 

5.3. Calcium balance in infants and children 

There are very few published data on calcium balance in infants and children. A stable isotope study in 

19 breast-fed infants aged 8–10 weeks (Hicks et al., 2012) reported a mean calcium intake of 

246 ± 20 mg/day and a calcium absorption of 76.0 ± 2.9 %. Total absorbed calcium was calculated to 

be 187 ± 16 mg/day. In comparison, in a group of 30 infants of the same age, calcium intake from 

cow’s milk formula was 557 ± 16 mg/day, calcium absorption was 59.2 ± 2.3 % and total calcium 

absorbed was 328 ± 13 mg/day. The Panel notes that this study was designed to measure calcium 

absorption, not retention. Butte et al. (2000) undertook repeated anthropometric and body composition 

measurements in infants from birth until 24 months of age. Exclusive breastfeeding for at least 4 

months (n = 40) resulted in lower BMC than in formula-fed infants (n = 36) at 12 months, but the 

difference disappeared by 24 months. Specker et al. (1997) reported that during the first 6 months of 

life, both breast milk and low-mineral (439 mg/L of calcium and 240 mg/L of phosphorus) formula 

were associated with lower bone mass accretion than high-mineral formula (1 350 mg/L of calcium 

and 900 mg/L of phosphorus), but by 12 months of age there were no differences in bone mass 

between the groups. 

Lynch et al. (2007) measured calcium absorption in 28 children aged 15–48 months using a dual-tracer 

stable-isotope technique; endogenous faecal excretion was measured in a subset of eight children, and 

net calcium balance was calculated. Mean calcium intake was 551 mg/day (range 124–983 mg/day), 

and mean (± SE) calcium retention was 161 ± 17 mg/day. Both linear and non-linear modelling of 

balance data showed that a calcium intake of approximately 470 mg/day led to a calcium retention of 

140 mg/day. 

Matkovic and Heaney (1992) pooled balance data from a number of published articles in order to 

examine the relationship between calcium intake and balance. At high intakes, balance tended to 

flatten and become constant, whereas, at lower intakes, balance was highly correlated with intake. The 

Panel notes that, during periods of growth, a positive balance is required for calcium to be supplied to 

the developing bones, and therefore balance data can only be used for deriving calcium requirements 

in infants and children when combined with bone accretion data. 

5.4. Calcium requirements in pregnancy and lactation 

In pregnancy, there are additional demands for calcium to meet the requirements of the developing 

fetal skeleton. The accretion of calcium takes place mainly in the second half of pregnancy with the 

estimated rate of 50 mg/day at 20 weeks’ gestation increasing to 330 mg/day at 35 weeks (Forbes, 

1976). During lactation, there is an additional requirement for calcium for the mammary gland. The 

average secretion of calcium in breast milk is 200 mg/day, but it can be as high as 400 mg/day 

(Prentice, 2003) (see Section 2.3.6.4). 

Calcium absorption increases during pregnancy and early lactation (Heaney and Skillman, 1971; Kent 

et al., 1991). Urinary calcium excretion is also raised, but this may be a consequence of increased 

absorption, and calcium balances are generally positive (King et al., 1992). There are conflicting 

reports on bone changes during pregnancy, with the majority of studies demonstrating maternal bone 

mobilisation from some sites, but this has been shown to be unrelated to dietary calcium intake 

(reviewed by Prentice (1994)). 

Olausson et al. (2012) reviewed the literature on calcium requirements during pregnancy and lactation. 

They concluded that, in both of these population groups, changes are induced in calcium and bone 

metabolism to support the transfer of calcium from the mother to the child. These are generally 

independent of maternal calcium intake in populations where dietary intakes are close to current 

recommendations. 
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The Panel acknowledges the existence of physiological adaptive processes that ensure sufficient 

calcium for fetal growth and breast milk production. These may obviate the need for additional 

calcium in the diet, provided intake is close to the DRV for adults. 

5.5. Calcium intake and health consequences 

A systematic review of the literature pertaining to calcium and vitamin D and health outcomes was 

published in 2009 (Chung et al., 2009). The studies included primary intervention or observational 

studies that reported outcomes in human subjects in relation to vitamin D and/or calcium intake/status, 

as well as systematic reviews that met the inclusion and exclusion criteria. Cross-sectional and 

retrospective case–control studies were excluded. Outcomes of relevance to calcium, and for which 

evidence was found, included bone and skeletal health, cancer, cardiovascular disease and 

hypertension. The review was not specifically targeted at life stages, except for pregnant and 

postmenopausal women, and there was a large variation in the methodological quality of the studies 

examined, which limited the possibilities for meta-analysis. In 165 primary studies and 11 systematic 

reviews (which included > 200 primary studies), the available evidence focused mainly on bone 

health, cardiovascular diseases and cancer. The authors concluded that the majority of the findings 

concerning vitamin D, calcium or a combination of both nutrients on the different health outcomes 

were inconsistent, and because the literature was so heterogeneous it was not possible to derive a 

dose–response relationship between intakes of vitamin D, calcium, or both nutrients, and health 

outcomes. One of the key challenges was the difficulty in separating the effects of calcium and 

vitamin D in many studies because of their close interrelationship. Furthermore, there were very few 

randomised controlled trials or clinical trials that focused on extraskeletal outcomes as the primary 

endpoint. 

A recent systematic review undertaken to inform the NNR 2012 project on calcium requirements and 

upper intake levels (Uusi-Rasi et al., 2013) reported on the effects of calcium intake for a number of 

health outcomes. The time frame for the search was January 2000 to December 2011. Life stages 

covered were infants, children, adolescents, adults including older adults, and pregnancy and lactation, 

and the population groups considered were primarily Caucasians. Outcome measures included 

pregnancy outcomes and growth, bone health (fractures, BMD, osteoporosis, bone mass, bone 

quality), muscle strength, all cancers (and breast, colorectal and prostate cancer separately), 

autoimmune diseases, diabetes mellitus type 2, obesity/weight control, total mortality, and clinical 

cardiovascular disease outcomes. The main limitations of this review were that most were calcium 

supplementation studies and did not report total calcium intake, that there was high heterogeneity of 

study protocols (widely varying intake of calcium, different study duration) and that dose–response 

studies were not reported. 

5.5.1. Bone health 

The NNR review (Uusi-Rasi et al., 2013) was not able to draw any conclusions on the effects of 

calcium intake on measures of bone health (skeletal growth, BMD and fractures) in any population 

group. The greatest limitations when evaluating the effect of calcium on bone health are 

methodological (differences in the measurement of BMD or BMC, lack of randomised controlled trials 

owing to the need for an intervention lasting for at least one year to attain measureable differences in 

BMD/BMC, and few data for some population groups, such as premenopausal women and men). 

There was high heterogeneity in protocols amongst the studies. 

There was insufficient evidence on maternal calcium intake and fetal growth to draw any conclusions 

(Uusi-Rasi et al., 2013). 

The Panel considers that measures of bone health cannot be used to derive DRVs for calcium. 

5.5.2.  Cardiovascular disease-related outcomes 

The NNR review (Uusi-Rasi et al., 2013) identified 13 studies (seven systematic reviews, three 

randomised controlled trials, three cohort studies) that addressed the effects of calcium on different 
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cardiovascular outcomes, but there was no consistent evidence of any association between calcium 

intake and cardiovascular outcomes apart from systolic blood pressure. The Panel notes that there was 

heterogeneity amongst the studies with wide variations in sources and intakes of calcium, as well as 

methods used to assess the quantity consumed. Most studies tested calcium supplementation, not total 

calcium intake, and several examined calcium plus vitamin D supplements. 

The Panel considers that evidence related to cardiovascular disease-related outcomes cannot be used to 

derive DRVs for calcium. 

5.5.3. Cancer 

Results of a meta-analysis (Chen et al., 2010) reported a 19 % (relative risk (RR) 0.81, 95 % CI 0.72–

0.90) decrease in the risk of breast cancer in women with the highest quantile of calcium intake 

compared with the lowest quantile, but there was significant heterogeneity among the studies and 

evidence of publication bias. Chung et al. (2009) reviewed primary studies that evaluated associations 

between calcium intake and incidence and mortality of prostate cancer. Twelve studies reported data 

on subjects with a mean age range of 53–67 years. Seven studies did not find an association between 

calcium intake and the risk of prostate cancer. Five studies found that the risk was higher in the groups 

that took more calcium (diet plus supplements) than in the groups that took less (adjusted odds ratio 

(OR) 1.2–2.2). The higher amount ranged from 921 to at least 2 000 mg/day of calcium; the lower 

amount ranged from 455 to 1 000 mg/day. Three studies also reported on the association between 

calcium intake and mortality from prostate cancer. Two studies found no association, and one study 

found an increased risk in the group that took at least 2 000 mg/day of calcium compared with the 

group that took 500–749 mg/day (adjusted RR 2.02, 95 % CI 1.14–3.58). Results from the US Prostate 

Cancer Prevention Trial (Kristal et al., 2010) found a positive association between dietary calcium 

intake (quartile 4 (> 1 165 mg/day) versus quartile 1 (< 598 mg/day)) and low-grade cancer (OR 1.27, 

95 % CI 1.02–1.57) but an inverse association with high-grade cancer (OR 0.43, 95 % CI 0.21–0.89). 

The NNR review (Uusi-Rasi et al., 2013) included nine studies (five systematic reviews, one meta-

analysis, three cohort studies) with cancer as an outcome. There was no consistent relationship 

between the level of calcium intake and different types of cancers; some showed a protective effect 

whilst, in others, calcium increased the risk. The Panel notes that owing to the nature of the health 

outcome, an evaluation of the effect of calcium intake on cancer risk needs an exposure of several 

years. This makes intervention studies impossible, and restricts studies to observational studies, at the 

same time requiring that intakes of calcium be assessed and monitored accurately, something which is 

rarely achieved. 

The Panel considers that evidence related to cancer cannot be used to derive DRVs for calcium. 

6. Data on which to base Dietary Reference Values 

In the absence of suitable biomarkers of status or function and of suitable data on calcium intake and 

health outcomes, the Panel decided to derive DRVs for calcium using a factorial approach for children 

and balance data for adults. The data required to derive ARs in different population groups are the 

calcium intakes that are needed to replace endogenous losses, and hence achieve null calcium balance, 

plus the quantities needed for growth and lactation, where appropriate. 

6.1. Infants aged 7–11 months 

Infants are growing and need to be in positive calcium balance. If a factorial approach is used to derive 

the physiological requirement, the quantity of calcium required for bone accretion must be added to 

the endogenous losses. However, factorial estimates of calcium requirements are difficult to calculate 

accurately in infants owing to limited data. In exclusively breast-fed infants, calcium retention is 

estimated to be 100 mg/day, most of which is used for bone growth and hence broadly equivalent to 

bone calcium accretion (Section 2.3.4). Endogenous losses have been reported to range from 2 to 

5 mg/kg body weight per day (Abrams et al., 1999) in infants aged 7–11 months. Assuming the lowest 

endogenous losses (2 mg/kg body weight per day) and 60 % absorption (Section 2.3.1), the intake 
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required to balance losses and enable adequate calcium accretion into bones is calculated as 

196 mg/day, and, using the highest endogenous losses (5 mg/kg body weight per day), the intake 

needed is 241 mg/day. 

The Panel notes the wide range and resultant uncertainty in factorial estimates for infants aged 7–11 

months. 

Although it is possible for formula-fed infants to increase calcium absorption and bone calcium 

accretion to levels above those achieved in breast-fed infants, this does not result in differences in 

BMC at 12 months (Specker et al., 1997). Therefore, the Panel decided to estimate the quantity of 

calcium absorbed by exclusively breast-fed infants and to extrapolate these values to older infants, 

taking into account body weight changes. The calcium concentration of breast milk over the first 3 

months of lactation is 200–300 mg/L (Olausson et al., 2012). Assuming a mean concentration over the 

first 6 months of lactation of 250 mg/L, an average breast milk consumption of infants aged 0–6 

months of 0.8 L/day (Butte et al., 2002; FAO/WHO/UNU, 2004; EFSA NDA Panel, 2009) and a 

calcium absorption of 60 % (see Section 2.3.1), the amount of absorbed calcium will be 120 mg/day. 

The AI for infants over 6 months of age can be derived by extrapolation from this figure, using 

isometric scaling (linear with body weight) and assuming an absorption of 60 % (Abrams et al., 

1997b; Abrams et al., 1997a; Abrams, 2010b, 2010a). The median body weight-for-age of infants aged 

9 months and 3 months according to the WHO Growth Standards (WHO Multicentre Growth 

Reference Study Group, 2006) served as reference body weights. For infants aged 7–11 months, the 

AI is estimated to be 280 mg/day. This is close to the value derived from the highest estimated 

endogenous losses using the factorial approach (241 mg/day). 

6.2. Children 

The AR is derived using the factorial approach. The total quantity of calcium required for bone 

accretion (Section 2.3.4) and replacement of endogenous losses (Section 2.3.6) is adjusted to account 

for the percentage of absorption (Section 2.3.1). The estimates used in the factorial approach to derive 

the AR for calcium for children are given in Table 7. 
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 Estimates used in the factorial approach to calculate dietary requirements for calcium for children  Table 7: 

Age Reference 

weight (kg) 

Calcium losses (mg/day)
(a)

 Requirement for bone calcium 

accretion (mg/day)
(b)

 

Physiological 

requirement 

(mg/day)
(c)

 

Percentage of 

absorption
(d)

 

Dietary 

requirement 

(mg/day)
(e)

 

Urinary Faecal Dermal 

1–3 years 11.9
(f)

 24 18 13 120 174 45 388 

4–6 years 19.0
(g)

 38 28 18 120 204 30 681 

7–10 years 28.8
(h)

 58 43 24 111 235 35 672 

11–14 years 44.8
(i)

 89 67 32 189 378 40 944 

15–17 years 59.8
(j)

 120 90 39 143 391 45 (M), 35 (F) 965 

F, females; M, males. Calculations were done with the unrounded figures, but figures in the table are given without decimals. 

(a): See Sections 2.3.6.1, 2.3.6.2 and 2.3.6.3. In the absence of data on dermal calcium losses in children, these were extrapolated from adult losses of 40 mg/day using body weight to the power 

of 0.67 as a proxy for body surface area. 

(b): See Section 2.3.4. Values for ages 5-6 years are 120 mg/day as for ages 1-4 years (Lynch et al., 2007). Values for ages 7–10 years are means of 120 mg/day for ages 7 and 8 years and the 

values reported by Vatanparast et al. (2010) for ages 9 and 10 years. Values for ages 11–14 years and 15–17 years are based on Vatanparast et al. (2010) and are means of values for the ages 

included in the age groups. 

(c): Sum of losses and requirement for bone calcium accretion. 

(d): See Section 2.3.1. 

(e): Dietary requirement = [(urinary losses + faecal losses + dermal losses) + calcium accretion in bone] / fractional absorption. 

 Example calculation for boys aged 2 years:  

 Dietary requirement = [(1.5 mg/kg per day × 12.2 kg) + (2 mg/kg per day × 12.2 kg) + 13 mg/day + 120 mg/day] / 0.45 = 390 mg/day. 

(f): Mean of body weight-for-age at 50th percentile of boys and girls aged 1, 2 (WHO Multicentre Growth Reference Study Group, 2006) and 3 years (van Buuren et al., 2012). 

(g): Mean of body weight at 50th percentile of boys and girls aged 4, 5, and 6 years (van Buuren et al., 2012). 

(h): Mean of body weight at 50th percentile of boys aged 7, 8, 9 and 10 years (van Buuren et al., 2012). 

(i): Mean of body weight at 50th percentile of girls aged 11, 12, 13 and 14 years (van Buuren et al., 2012). 

(j): Mean of body weight at 50th percentile of boys and girls aged 15, 16 and 17 years (van Buuren et al., 2012). 
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For children aged 1–3 years, the requirement for bone calcium accretion is 120 mg/day, for 

endogenous faecal calcium loss is 1.5 mg/kg body weight per day, for urinary calcium loss is 2 mg/kg 

body weight per day and for dermal losses is 13 mg/day, extrapolated by allometric scaling (body 

weight
0.67

) from the value for adults (40 mg/day; Section 2.3.6.2) and averaged over the 3 years. Using 

median body weights of boys and girls aged 1, 2 (WHO Multicentre Growth Reference Study Group, 

2006) and 3 years (van Buuren et al., 2012), physiological requirements were calculated for both sexes 

combined and per year. These were averaged and the dietary requirement was derived assuming a 

calcium absorption of 45 % (see Section 2.3.1). A dietary requirement of 388 mg/day was calculated, 

and the Panel derived an AR of 390 mg/day. 

In children aged 4–6 years, the Panel assumed a similar calcium requirement for bone calcium 

accretion (120 mg/day) and endogenous faecal calcium losses of 1.5 mg/kg body weight per day. 

Urinary losses were assumed to be 2 mg/kg body weight per day. Dermal losses were extrapolated by 

allometric scaling (body weight
0.67

) from the value for adults (40 mg/day; Section 2.3.6.2) and 

averaged over the 3 years. Using median body weights of boys and girls aged 4, 5 and 6 years (van 

Buuren et al., 2012), physiological requirements were calculated for the combined sexes at each year 

of age. These were averaged and the dietary requirement of 681 mg/day was derived assuming a 

calcium absorption of 30 %. 

In children aged 7–10 years, a similar approach was used to calculate endogenous faecal (43 mg/day), 

urinary (58 mg/day) and dermal (24 mg/day) losses. The requirement for bone calcium accretion was 

assumed to be 120 mg/day in children aged 7 and 8 years and as estimated by Vatanparast et al. (2010) 

for children aged 9 and 10 years. Physiological requirements were calculated for the combined sexes 

at each year of age and thereafter averaged. Assuming 35 % calcium absorption, a dietary requirement 

of 672 mg/day was calculated. As the dietary requirement of children aged 4–6 and 7–10 years is 

similar, the Panel decided to derive an AR of 680 mg/day for children aged 4–10 years. 

In older children aged 11–17 years, additional calcium is required for accelerated bone growth 

associated with puberty. From the height-for-age data of children in EU countries, the growth velocity 

appears to be highest at 14–17 years of age in boys and 12–15 years of age in girls (van Buuren et al., 

2012). The Panel decided to use calcium bone accretion data from a longitudinal study (Vatanparast et 

al., 2010) (Section 2.3.4). Combining the bone accretion data and growth velocity charts for European 

children, the Panel decided to derive combined DRVs for boys and girls, for 11–14 and 15–17 years of 

age. Endogenous faecal losses (1.5 mg/kg body weight per day) observed in children aged 11–14 years 

(Section 2.3.6.2) were calculated based on median body weights at 11, 12, 13 and 14 years of age (van 

Buuren et al., 2012). Urinary losses were assumed to be 2 mg/kg body weight per day, and dermal 

losses were extrapolated by allometric scaling (body weight
0.67

) from the values for adults (40 mg/day, 

see Section 2.3.6.2). Daily requirements for bone calcium accretion were based on data by Vatanparast 

et al. (2010). Physiological requirements were calculated for each sex and per year. These were then 

averaged and a dietary requirement of 944 mg/day was derived assuming a calcium absorption of 

40 % (see Section 2.3.1). For children aged 15–17 years, the same approach and database was used as 

in children aged 11–14 years. A dietary requirement of 965 mg/day was calculated, assuming 35 % 

absorption in girls and 45 % in boys (because of their different pubertal statuses and hence bone 

calcium accretions). As the dietary requirement of children aged 11–14 and 15–17 years is similar, the 

Panel decided to derive an AR of 960 mg/day for children aged 11–17 years. 

In the absence of knowledge about the variation in requirement, PRIs for children of the various age 

groups were estimated based on a CV of 10 %, and rounded down to the nearest 50 (see Table 8). 

6.3. Adults 

6.3.1. Young adults (18–24 years) 

The accretion of calcium in bone continues for a few years after growth has stopped; therefore, there is 

an additional requirement for calcium in young adults, aged 18–24 years (Section 2.3.4). 
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As this additional requirement for calcium in young adults is unknown, the AR is derived as the 

intermediate value between the AR for children aged 11–17 years and that for adults ≥ 25 years, and is 

860 mg/day. In the absence of knowledge about the variation in requirements, the PRI was estimated 

based on a CV of 10 %, and rounded down to the nearest 50 (see Table 8). 

6.3.2. Adults (25 years and upwards) 

The Panel has analysed balance data obtained from North American adults (Section 5.2). The mean 

intake of calcium at which intake equals excretion was 715 mg/day. The calcium excretion data used 

to compute calcium balance do not include dermal losses. Hunt and Johnson (2007) assumed that 

dermal losses in adults are negligible, but the Panel has decided to add a value of 40 mg/day to the 

estimated mean and upper limit of the mean calcium intake with which null calcium balance was 

achieved in North American adults to make an allowance for dermal losses (Section 2.3.6.3) and 

derived an AR of 750 mg/day. 

The 95 % marginal prediction interval is the estimate of the individual values in a population provided 

by the model with 95 % confidence. Its upper bound represents the 97.5
th
 percentile of the distribution 

of the individual predictions for each level of the predictor (dietary calcium intake) at the population 

average random effects. This prediction interval upper bound at the level of calcium null balance for 

the population mean is equal to 904 mg/day. Adding to this value dermal losses of 40 mg/day and 

rounding up to the nearest 50, a PRI of 950 mg/day is derived for men and women aged 25 years and 

above. Using the “classical” approach (EFSA NDA Panel, 2010) of deriving the PRI from the AR of 

750 mg/day by assuming a CV of 10 % would result in a value of 900 mg/day. 

6.4. Pregnancy 

The adaptive physiological changes that occur during pregnancy (e.g. enhanced efficiency of 

absorption) are largely independent of maternal calcium intake, unless intake is very low (reviewed by 

Olausson et al. (2012)) (see Section 5.4). Therefore, the Panel concludes that additional calcium is not 

required for pregnant women. 

6.5. Lactation 

The adaptive physiological changes that occur during lactation (e.g. enhanced efficiency of absorption, 

loss of calcium from bone) are largely independent of maternal calcium intake, unless intake is very 

low (reviewed by Olausson et al. (2012)). In two randomised, placebo-controlled trials, Kalkwarf et al. 

(1997) found no effect of calcium supplementation (1 000 mg/day) on bone density in the forearm or 

on the calcium concentration in breast milk, demonstrating that bone loss cannot be prevented with 

higher intakes of calcium. The Panel concludes that additional calcium is not required during lactation. 
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CONCLUSIONS 

The Panel concludes that ARs and PRIs for calcium can be derived for adults based on calcium 

balance data from North America. Adding an allowance for dermal losses of calcium to the mean 

value at which calcium intake equals excretion (null balance), an AR is derived for adults ≥ 25 years. 

Adding an allowance for dermal losses to the upper bound 95 % CI at the level corresponding to null 

balance for the population mean allowed estimation of the PRI. The PRI for young adults (18–24 

years), who still accumulate calcium in bones, is derived as the intermediate value between 

adolescents aged 15–17 years and adults ≥ 25 years. For infants aged 7–11 months, an AI was derived 

by extrapolating the average amount of calcium absorbed by exclusively breast-fed infants using 

isometric scaling and taking into account the percentage of calcium absorption. For children, ARs 

were estimated based on factorial calculation of losses and considering the need for calcium accretion 

in bone, and taking into account the percentage of calcium absorption at various ages. In the absence 

of knowledge about the variation in requirement, PRIs for children and young adults were estimated 

based on a CV of 10 %. Taking into consideration adaptive changes in calcium metabolism that occur 

during pregnancy and lactation, the AR for adult women aged 18–24 years and ≥ 25 years, 

respectively, also applies to pregnant and lactating women. 

 Summary of Dietary Reference Values for calcium for infants, children and adults Table 8: 

Age Adequate Intake 

(mg/day) 

Average Requirement 

(mg/day) 

Population Reference Intake 

(mg/day) 

7–11 months 280   

1–3 years  390 450 

4–10 years  680 800 

11–17 years  960 1 150 

Adults 18–24 years
(a)

  860 1 000 

Adults ≥ 25 years
(a)

  750 950 

(a): Including pregnancy and lactation. 

RECOMMENDATIONS FOR RESEARCH 

The Panel recommends that studies be undertaken to generate data required for deriving calcium 

requirements in young children using the factorial approach (measurements of obligatory losses and 

bone accretion/calcium retention). 

The Panel recommends that research be undertaken to provide more accurate values for dermal 

calcium losses. 

The Panel recommends that research be undertaken on the effects of very old age on calcium 

requirements (measurements of efficiency of absorption, obligatory losses and changes in bone 

calcium content). 
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APPENDICES 

Appendix A.  Dietary surveys in the EFSA Comprehensive European Food Consumption Database included in the nutrient intake calculation and 

the number of subjects in the different age classes 

Country Dietary survey 

(year) 

Year Method Days Age 

(years) 

Number of subjects
(a)

 

Infants 

1–11 mo 

Children 

1–< 3 y 

Children 

3–< 10 y 

Children 

10–< 18 y 

Adults 

18–< 65 y 

Adults 

65–< 75 y 

Adults 

≥ 75 y 

Finland/1 DIPP 2000–2010 Dietary record 3 0.5–6 499 500 750     

Finland/2 NWSSP 2007–2008 48-hour dietary 

recall
(b)

 
2  2

(b)
 13–15    306    

Finland/3 FINDIET2012 2012 48-hour dietary 

recall
(b)

 

2
(b)

 25–74     1 295 413  

France INCA2 2006–2007 Dietary record 7 3–79   482 973 2 276 264 84 

Germany/1 EsKiMo 2006 Dietary record 3 6–11   835 393    

Germany/2 VELS 2001–2002 Dietary record 6 < 1–4 158 347 299     

Ireland NANS 2008–2010 Dietary record 4 18–90     1 274 149 77 

Italy INRAN-SCAI  2005–2006 Dietary record 3 < 1–98 16 
(a)

 36 
(a)

 193 247 2 313 290 228 

Latvia FC_PREGNANT

WOMEN 

2011 24-hour dietary recall 2 15–45    12 
(a)

 991 
(c)

   

Netherlands DNFCS 2007–2010 24-hour dietary recall 2 7–69   447 1 142 2 057 173  

Sweden Riksmaten 2010–2011 Dietary records (web)  4 18–80     1 430 295 72 

UK/1 DNSIYC 2011 Dietary record 4 0.3–1.5 1 369 1 314      

UK/2 NDNS-Rolling 

Programme 

(Years 1–3) 

2008–2011 Dietary record 4 1–94  185 651 666 1 266 166 139 

mo, months; y, years; DIPP, type 1 Diabetes Prediction and Prevention survey; DNFCS, Dutch National Food Consumption Survey; DNSIYC, Diet and Nutrition Survey of Infants and Young 

Children; EsKiMo, Ernährungsstudie als KIGGS-Modul; FINDIET, the national dietary survey of Finland; INCA, étude Individuelle Nationale des Consommations Alimentaires; INRAN-SCAI, 

Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione - Studio sui Consumi Alimentari in Italia; FC_PREGNANTWOMEN, food consumption of pregnant women in Latvia; NANS, 

National Adult Nutrition Survey; NDNS, National Diet and Nutrition Survey; NWSSP, Nutrition and Wellbeing of Secondary School Pupils; VELS, Verzehrsstudie zur Ermittlung der 

Lebensmittelaufnahme von Säuglingen und Kleinkindern für die Abschätzung eines akuten Toxizitätsrisikos durch Rückstände von Pflanzenschutzmitteln. 

(a): 5th or 95th percentile intakes calculated from fewer than 60 subjects require cautious interpretations, as the results may not be statistically robust (EFSA, 2011b) and, therefore, for these 

dietary surveys/age classes, the 5th and 95th percentile estimates will not be presented in the intake results. 
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(b): A 48-hour dietary recall comprises 2 consecutive days. 

(c): One subject with only one 24-hour dietary recall day was excluded from the dataset, i.e. the final n = 990. 



www.manaraa.com

Dietary Reference Values for calcium 

 

EFSA Journal 2015;13(5):4101 60 

Appendix B.  Calcium intake in males in different surveys according to age classes and country 

Age class Country Survey Intake expressed in mg/day Intake expressed in mg/MJ 

n
(a)

 Average Median P5 P95 n
(a)

 Average Median P5 P95 

Infants Finland DIPP_2001_2009 247 312 293 13 665 245 136 148 35 216 

 Germany VELS 84 440 431 230 703 84 137 134 69 214 

 Italy INRAN_SCAI_2005_06 9 502 476 
(b) (b)

 9 165 162 
(b)

 
(b)

 

 United Kingdom DNSIYC_2011 699 584 576 347 832 699 174 176 108 225 

1 to < 3 Finland DIPP_2001_2009 245 671 640 202 1 193 245 180 175 97 287 

 Germany VELS 174 591 568 285 964 174 128 120 67 208 

 Italy INRAN_SCAI_2005_06 20 729 711 
(b)

 
(b)

 20 151 130 
(b)

 
(b)

 

 United Kingdom DNSIYC_2011 663 784 767 395 1 204 663 188 183 113 279 

 United Kingdom NDNS-RollingProgrammeYears1–3 107 838 824 406 1 310 107 170 167 99 250 

3 to < 10 Finland DIPP_2001_2009 381 986 1 001 461 1 468 381 168 170 81 245 

 France INCA2 239 808 793 439 1 289 239 132 125 69 217 

 Germany EsKiMo 426 757 743 380 1 172 426 99 97 56 142 

 Germany VELS 146 617 584 325 1 041 146 110 106 64 182 

 Italy INRAN_SCAI_2005_06 94 743 731 435 1 162 94 103 99 57 162 

 Netherlands DNFCS 2007–2010 231 854 804 366 1 499 231 100 99 44 164 

 United Kingdom NDNS-RollingProgrammeYears1–3 326 799 766 411 1 280 326 128 124 71 199 

10 to < 18 Finland NWSSP07_08 136 1 273 1 203 539 2 258 136 156 146 73 253 

 France INCA2 449 846 834 397 1 387 449 108 107 59 168 

 Germany EsKiMo 197 809 775 430 1 318 197 100 97 57 161 

 Italy INRAN_SCAI_2005_06 108 863 812 363 1 486 108 88 87 44 139 

 Netherlands DNFCS 2007–2010 566 976 910 375 1 753 566 93 88 37 164 

 United Kingdom NDNS-RollingProgrammeYears1–3 340 822 781 407 1 355 340 101 96 56 156 

18 to < 65 Finland FINDIET2012 585 1 121 1 026 399 2 188 585 121 117 52 208 

 France INCA2 936 913 876 401 1 521 936 105 101 59 164 

 Ireland NANS_2012 634 1 089 1 037 519 1 836 634 109 104 63 168 

 Italy INRAN_SCAI_2005_06 1 068 793 758 326 1 390 1 068 87 84 43 141 

 Netherlands DNFCS 2007–2010 1 023 1 122 1 054 447 2 042 1 023 102 95 42 181 

 Sweden Riksmaten 2010 623 1 058 983 444 1 817 623 108 104 59 172 

 United Kingdom NDNS-RollingProgrammeYears1–3 560 943 908 439 1 605 560 108 105 59 167 
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Age class Country Survey Intake expressed in mg/day Intake expressed in mg/MJ 

n
(a)

 Average Median P5 P95 n
(a)

 Average Median P5 P95 

65 to < 75 Finland FINDIET2012 210 945 899 353 1 814 210 115 110 55 194 

 France INCA2 111 893 849 466 1 393 111 105 99 66 154 

 Ireland NANS_2012 72 993 948 370 1 591 72 112 109 72 157 

 Italy INRAN_SCAI_2005_06 133 764 710 374 1 273 133 89 85 47 144 

 Netherlands DNFCS 2007–2010 91 980 918 330 1 564 91 107 106 48 167 

 Sweden Riksmaten 2010 127 997 1 009 474 1 602 127 116 110 71 170 

 United Kingdom NDNS-RollingProgrammeYears1–3 75 1 017 1 017 489 1 747 75 123 115 78 196 

≥ 75 France INCA2 40 836 743 
(b)

 
(b)

 40 109 100 
(b)

 
(b)

 

 Ireland NANS_2012 34 969 913 
(b)

 
(b)

 34 125 123 
(b)

 
(b)

 

 Italy INRAN_SCAI_2005_06 69 859 818 346 1 426 69 98 100 52 143 

 Sweden Riksmaten 2010 42 987 964 
(b)

 
(b)

 42 117 116 
(b)

 
(b)

 

 United Kingdom NDNS-RollingProgrammeYears1–3 56 879 840 
(b)

 
(b)

 56 122 116 
(b)

 
(b)

 

P5, 5th percentile; P95, 95th percentile; DIPP, type 1 Diabetes Prediction and Prevention survey; DNFCS, Dutch National Food Consumption Survey; DNSIYC, Diet and Nutrition Survey of 

Infants and Young Children; EsKiMo, Ernährungsstudie als KIGGS-Modul; FINDIET, the national dietary survey of Finland; INCA, étude Individuelle Nationale des Consommations 

Alimentaires; INRAN-SCAI, Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione - Studio sui Consumi Alimentari in Italia; FC_PREGNANTWOMEN, food consumption of pregnant 

women in Latvia; NANS, National Adult Nutrition Survey; NDNS, National Diet and Nutrition Survey; NWSSP, Nutrition and Wellbeing of Secondary School Pupils; VELS, Verzehrsstudie 

zur Ermittlung der Lebensmittelaufnahme von Säuglingen und Kleinkindern für die Abschätzung eines akuten Toxizitätsrisikos durch Rückstände von Pflanzenschutzmitteln. 

(a): Number of individuals in the population group. 

(b): 5th or 95th percentile intakes calculated from fewer than 60 subjects require cautious interpretation, as the results may not be statistically robust (EFSA, 2011b) and, therefore, for these 

dietary surveys/age classes, the 5th and 95th percentile estimates will not be presented in the intake results. 
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Appendix C.  Calcium intake in females in different surveys according to age classes and country 

Age class Country Survey Intake expressed in mg/day Intake expressed in mg/MJ 

n
(a)

 Average Median P5 P95 n
(a)

 Average Median P5 P95 

Infants Finland DIPP_2001_2009 253 307 308 15 697 251 147 155 44 231 

 Germany VELS 75 392 377 211 658 75 135 133 77 207 

 Italy INRAN_SCAI_2005_06 7 522 529 
(b) (b)

 7 179 185 
(b)

 
(b)

 

 United Kingdom DNSIYC_2011 670 528 511 298 815 670 173 175 102 227 

1 to < 3 Finland DIPP_2001_2009 255 672 652 160 1 171 255 192 187 61 308 

 Germany VELS 174 533 502 288 915 174 125 121 68 199 

 Italy INRAN_SCAI_2005_06 16 685 652 
(b)

 
(b)

 16 151 159 
(b)

 
(b)

 

 United Kingdom DNSIYC_2011 651 734 710 361 1 144 651 186 184 111 270 

 United Kingdom NDNS-RollingProgrammeYears1–3 78 703 685 339 1 083 78 157 156 83 242 

3 to < 10 Finland DIPP_2001_2009 369 935 938 474 1 361 369 178 176 101 260 

 France INCA2 243 724 710 440 1 073 243 132 127 80 209 

 Germany EsKiMo 409 709 681 347 1 146 409 105 101 58 163 

 Germany VELS 147 589 561 332 978 147 114 106 71 176 

 Italy INRAN_SCAI_2005_06 99 697 675 368 1 099 99 97 92 58 156 

 Netherlands DNFCS 2007–2010 216 819 775 323 1 624 216 101 99 39 181 

 United Kingdom NDNS-RollingProgrammeYears1–3 325 733 716 362 1 137 325 124 121 70 182 

10 to < 18 Finland NWSSP07_08 170 1 020 1 007 464 1 762 170 154 157 82 238 

 France INCA2 524 707 702 306 1 160 524 112 110 61 169 

 Germany EsKiMo 196 767 751 352 1 218 196 104 99 51 166 

 Italy INRAN_SCAI_2005_06 139 732 688 417 1 255 139 92 86 52 142 

 Latvia FC_PREGNANTWOMEN_2011 
(c)

 12 1058 955 
(b)

 
(b)

 12 102 99 
(b)

 
(b)

 

 Netherlands DNFCS 2007–2010 576 867 836 329 1 534 576 100 96 41 178 

 United Kingdom NDNS-RollingProgrammeYears1–3 326 675 636 318 1 136 326 100 94 56 165 

18 to < 65 Finland FINDIET2012 710 980 908 432 1 762 710 137 131 68 224 

 France INCA2 1340 813 786 390 1 312 1 340 128 121 72 211 

 Ireland NANS_2012 640 856 816 421 1 385 640 117 113 72 180 

 Italy INRAN_SCAI_2005_06 1245 730 702 337 1 193 1 245 101 96 54 161 

 Latvia FC_PREGNANTWOMEN_2011 
(c)

 990 801 750 380 1 383 990 95 90 47 160 

 Netherlands DNFCS 2007–2010 1034 951 893 396 1 692 1 034 117 109 54 203 

 Sweden Riksmaten 2010 807 885 856 412 1 441 807 125 113 64 185 

 United Kingdom NDNS-RollingProgrammeYears1–3 706 788 749 378 1 280 706 120 113 67 194 
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Age class Country Survey Intake expressed in mg/day Intake expressed in mg/MJ 

n
(a)

 Average Median P5 P95 n
(a)

 Average Median P5 P95 

65 to < 75 Finland FINDIET2012 203 828 770 322 1 392 203 133 130 68 213 

 France INCA2 153 776 761 376 1 202 153 127 117 69 215 

 Ireland NANS_2012 77 936 801 492 1 659 77 137 131 88 213 

 Italy INRAN_SCAI_2005_06 157 690 680 322 1 151 157 101 97 48 171 

 Netherlands DNFCS 2007–2010 82 896 880 445 1 394 82 126 117 68 209 

 Sweden Riksmaten 2010 168 900 870 434 1 470 168 129 126 76 198 

 United Kingdom NDNS-RollingProgrammeYears1–3 91 820 793 458 1 310 91 137 129 87 225 

≥ 75 France INCA2 44 806 766 
(b)

 
(b)

 44 135 128 
(b)

 
(b)

 

 Ireland NANS_2012 43 865 903 
(b)

 
(b)

 43 139 136 
(b)

 
(b)

 

 Italy INRAN_SCAI_2005_06 159 735 754 336 1 157 159 112 105 60 189 

 Sweden Riksmaten 2010 30 985 1 024 
(b)

 
(b)

 30 139 140 
(b)

 
(b)

 

 United Kingdom NDNS-RollingProgrammeYears1–3 83 864 816 484 1 278 83 143 143 90 208 

P5, 5th percentile; P95, 95th percentile; DIPP, type 1 Diabetes Prediction and Prevention survey; DNFCS, Dutch National Food Consumption Survey; DNSIYC, Diet and Nutrition Survey of 

Infants and Young Children; EsKiMo, Ernährungsstudie als KIGGS-Modul; FINDIET, the national dietary survey of Finland; INCA, étude Individuelle Nationale des Consommations 

Alimentaires; INRAN-SCAI, Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione - Studio sui Consumi Alimentari in Italia; FC_PREGNANTWOMEN, food consumption of pregnant 

women in Latvia; NANS, National Adult Nutrition Survey; NDNS, National Diet and Nutrition Survey; NWSSP, Nutrition and Wellbeing of Secondary School Pupils; VELS, Verzehrsstudie 

zur Ermittlung der Lebensmittelaufnahme von Säuglingen und Kleinkindern für die Abschätzung eines akuten Toxizitätsrisikos durch Rückstände von Pflanzenschutzmitteln. 

(a): Number of individuals in the population group. 

(b): 5th or 95th percentile intakes calculated from fewer than 60 subjects require cautious interpretation, as the results may not be statistically robust (EFSA, 2011b) and, therefore, for these 

dietary surveys/age classes, the 5th and 95th percentile estimates will not be presented in the intake results. 

(c): Pregnant women only. 
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Appendix D.  Minimum and maximum percentage contribution of different food groups to calcium intake in males 

Food groups Age (years) 

< 1 1 to < 3 3 to < 10 10 to < 18 18 to < 65 65 to < 75 ≥ 75 

Additives, flavours, baking and processing aids < 1 < 1 0 0 0 0 0 

Alcoholic beverages < 1 < 1 < 1 < 1 1–3 1–2 1–2 

Animal and vegetable fats and oils < 1 < 1 < 1 < 1 < 1 < 1–1 < 1–1 

Coffee, cocoa, tea and infusions < 1 < 1–1 < 1–2 < 1–3 1–11 1–10 < 1–10 

Composite dishes < 1–2 < 1–5 < 1–7 < 1–12 < 1–10 1–9 < 1–8 

Eggs and egg products < 1 < 1–1 < 1–1 < 1–1 < 1–1 < 1–2 < 1–1 

Fish, seafood, amphibians, reptiles and invertebrates < 1 < 1–1 < 1–3 < 1–3 < 1–3 < 1–4 1–2 

Food products for young population 30–60 3–21 < 1–1 < 1 < 1 – – 

Fruit and fruit products < 1–4 1–2 1–2 1–2 1–3 1–5 1–3 

Fruit and vegetable juices and nectars < 1 < 1–2 1–2 1–2 < 1–2 < 1–2 < 1–1 

Grains and grain-based products < 1–6 3–12 2–19 2–22 7–27 7–33 6–35 

Human milk < 1–24 < 1–1 – – – – – 

Legumes, nuts, oilseeds and spices < 1–1 < 1–2 < 1–2 < 1–2 1–2 1–2 < 1–1 

Meat and meat products < 1 < 1–1 1–2 1–2 1–2 1–2 1–2 

Milk and dairy products 21–30 62–74 55–84 43–83 38–69 39–67 39–62 

Products for non-standard diets, food imitates and food supplements or fortifying agents < 1 0–1 < 1–1 < 1–1 < 1–2 < 1 < 1–1 

Seasoning, sauces and condiments < 1 < 1–1 < 1–1 < 1–1 < 1–2 < 1–2 < 1–2 

Starchy roots or tubers and products thereof, sugar plants < 1–1 < 1–1 < 1–1 1–2 1–2 1–2 1–2 

Sugar, confectionery and water-based sweet desserts < 1 < 1–4 1–7 1–7 < 1–2 < 1–1 < 1–1 

Vegetables and vegetable products < 1–3 1–3 2–5 2–6 1–9 2–11 2–8 

Water and water-based beverages 1–17 2–9 1–13 2–15 3–16 2–15 2–13 

“–” means that there was no consumption event of the food group for the age and sex group considered, whereas “0” means that there were some consumption events, but that the food group 

does not contribute to the intake of the nutrient considered, for the age and sex group considered. 
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Appendix E.  Minimum and maximum percentage contribution of different food groups to calcium intake in females 

Food groups Age (years) 

< 1 1 to < 3 3 to < 10 10 to < 18 18 to < 65 65 to < 75 ≥ 75 

Additives, flavours, baking and processing aids < 1 0 0 0 0 0 0 

Alcoholic beverages 0 < 1 < 1 < 1 < 1–1 < 1–2 < 1–1 

Animal and vegetable fats and oils < 1 < 1 < 1 < 1 < 1 < 1–1 < 1–1 

Coffee, cocoa, tea and infusions < 1 < 1–1 < 1–2 < 1–3 1–11 1–11 1–11 

Composite dishes < 1–2 < 1–5 < 1–7 < 1–13 1–10 < 1–8 < 1–9 

Eggs and egg products < 1 < 1–1 < 1–2 < 1–1 < 1–1 < 1–1 < 1–1 

Fish, seafood, amphibians, reptiles and invertebrates 0 < 1–1 < 1–2 < 1–4 < 1–3 1–2 1–2 

Food products for young population 31–63 4–16 < 1–2 < 1–1 < 1 – < 1 

Fruit and fruit products 1–4 1–2 1–2 1–4 1–5 2–7 1–4 

Fruit and vegetable juices and nectars < 1 < 1–2 1–2 1–2 < 1–1 < 1–1 < 1–1 

Grains and grain-based products 1–6 2–14 2–19 3–21 7–26 6–28 6–28 

Human milk < 1–12 1 – – – – – 

Legumes, nuts, oilseeds and spices < 1–1 < 1–2 < 1–2 < 1–2 1–2 1–2 1 

Meat and meat products < 1 < 1–1 1–2 1–2 1–2 1 1 

Milk and dairy products 12–41 60–73 54–85 40–78 39–67 43–65 45–60 

Products for non-standard diets, food imitates and food supplements or fortifying agents < 1 < 1–1 0–1 < 1–2 < 1–3 < 1–2 < 1–3 

Seasoning, sauces and condiments < 1 < 1–1 < 1–1 < 1–1 < 1–2 < 1–1 < 1–2 

Starchy roots or tubers and products thereof, sugar plants < 1–1 1 1 1–2 < 1–2 1 1 

Sugar, confectionery and water-based sweet desserts < 1–1 < 1–3 1–7 1–7 1–3 < 1–1 < 1–1 

Vegetables and vegetable products 1–3 1–3 2–5 2–6 2–9 2–10 2–8 

Water and water-based beverages 2–12 2–11 1–13 2–15 4–18 3–16 3–16 

“–” means that there was no consumption event of the food group for the age and sex group considered, whereas “0” means that there were some consumption events, but that the food group 

does not contribute to the intake of the nutrient considered, for the age and sex group considered. 
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Appendix F.  Analysis of calcium balance data for adults 

Objective 

The objective of the analysis was to estimate the level of calcium intake that corresponds to a null 

balance in the healthy adult population based on experimental data. The estimated mean value leading 

to null balance in the sampled population is assumed to correspond to the AR, the level of intake that 

is adequate for half of the people in a population group. Traditionally, a PRI, i.e. the level of intake 

that is adequate for 97–98 % of the people in a population group, is derived from the AR by adding 

two times the standard deviation of the requirement in the population (EFSA NDA Panel, 2010). 

In contrast to the methodology commonly adopted to derive a PRI, a new approach was taken in this 

work following Hunt and Johnson (2007). A model was set up to establish the dietary calcium intake 

level able to predict a null balance for half of the population (mean predicted value, assuming a normal 

distribution). The PRI was estimated as the value corresponding to the 97.5
th
 percentile of the 

population derived from the same model (upper level of the marginal prediction interval at the level 

corresponding to a null balance for the estimated population mean). For estimating model parameters, 

metabolic data collected by the US Department of Agriculture, Agricultural Research Service, were 

used. Some of these data were previously analysed by Hunt and Johnson (2007) in their work. 

Methodological difference with the analysis performed by Hunt and Johnson (2007) 

A similar work was performed by Hunt and Johnson (2007). An average value of dietary calcium 

intake corresponding to a null balance (excretion equal to intake) was established as 741 (when 

expressed in mg/day), 9.39 (when expressed in mg/kg body weight per day) and 0.279 (when 

expressed in mg/kcal per day). These values were assumed by the authors to be the ARs. 

A further analysis was performed on the same set of data because the NDA Panel decided to: 

1. Consider different eligibility criteria for the study selection such as: 

 exclusion of subjects younger than 25 years; 

 inclusion of studies with calcium supplementation; 

2. Use a different structure of the variance/covariance matrix of the explanatory model in terms 

of: 

 random component (“study” instead of “individual”); 

 covariance structure considered in the error component (correlation among multiple 

replicates on the same subject); 

3. Use a different approach for the derivation of the PRI: 

 a calibration methodology has been used by Hunt and Johnson (2007) for the derivation of 

the intake requirement corresponding to the calcium excretion at null balance (Oman, 

1998); 

 the upper limit of the prediction interval for the population calcium excretion at the null 

balance has been adopted for the current estimate. 

The above-mentioned methodological differences can eventually justify differences in the results 

between the publication by Hunt and Johnson (2007) and results presented in this Opinion. 

Sources of information 

Hunt and Johnson (2007) used experimental data collected from metabolic studies in humans, 

including measures of dietary calcium intake and the corresponding excretion in urine and faeces. The 

list of 19 studies considered by the authors, as well as their main characteristics, is provided in Table 1 



www.manaraa.com

Dietary Reference Values for calcium 

 

EFSA Journal 2015;13(5):4101 67 

of Hunt and Johnson (2007). Based on a request for data, EFSA received a set of individual data points 

belonging to 27 studies (eight of those not included in the list in Table 1 of Hunt and Johnson (2007)). 

All studies were carried out at the US Department of Agriculture, Agricultural Research Service, 

Grand Forks Human Nutrition Research Center, between 1976 and 1995. These experiments were 

designed to meet various objectives and various target populations corresponding to a wide range of 

individual characteristics (e.g. obese women, young men carrying out very intense physical activity). 

Each study was run over subsequent dietary periods, the numbers of which ranged from one to six. 

Therefore, replicated observations over time were available for each subject in most of the studies. 

The minimum length of any dietary period was 18 days. 

The provision of data was limited to the subset of variables considered by Hunt and Johnson (2007). 

They included age, sex and body weight of the subjects, as well as measures of dietary calcium intake, 

excretion and balance, all of which were expressed in mg/day, mg/kg body weight per day and 

mg/kcal of dietary intake per day. 

Calcium content of the diet and urinary and faecal calcium excretion were determined analytically in 

all studies. However, no data were available in the metabolic studies provided to EFSA on the amount 

of calcium eliminated via sweat loss. Consequently, the latter was not accounted for in the current 

analysis. The lack of consideration of the loss via sweat represents a source of bias (potential 

underestimation of calcium excretion) that needs to be considered when drawing conclusions. 

The individual data points are the property of the US Department of Agriculture, Agricultural 

Research Service, Grand Forks Human Nutrition Research Center. Therefore, they cannot be disclosed 

by EFSA. 

Summary statistics of the characteristics of the subjects included in the studies provided to EFSA are 

reported in Table 9. A total of 247 subjects were considered for a total of 566 observations (some of 

which are correlated, as measurements were replicated in the same subject over different periods of 

time). Data on 144 females (306 observations in total) and 103 males (260 observations in total) were 

available. 

 Sex, number of subjects and observations (not all independent) by study  Table 9: 

Study Sex Sample size (number of subjects) Total number of observations 

1 M 13 57 

2 M 9 15 

3 M 2 4 

4 M 4 7 

5 M 10 17 

6 M 6 11 

7 M 9 16 

8 M 8 30 

9 M 7 19 

10 F 7 42 

11 F 7 9 

12 F 5 20 

13
(a)

 F 14 14 

14 M 7 17 

15 F 14 27 

16 F 12 14 

17
(a)

 F 6 6 

18 M 14 42 

19 F 8 8 

20 M 11 22 

21 M 3 3 
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Study Sex Sample size (number of subjects) Total number of observations 

22 F 3 3 

23 F 14 42 

24 F 13 51 

25 F 14 27 

26 F 13 14 

27 F 14 29 

F, female; M, male. 

(a): Studies 13 and 17 were weight loss studies on obese women. Only maintenance diet data were extracted for these 

studies. 

The distribution by age classes of the subjects in the sample provided to EFSA was quite uneven by 

sex, with the majority of women being older than 50, while men over 50 were highly underrepresented 

(Table 10). 

 Population included in the studies by sex and age classes  Table 10: 

Sex Age class Number of subjects 

F < 25 years 12 

F 25–49 42 

F ≥ 50 years 90 

M < 25 years 34 

M 25–49 64 

M ≥ 50 years 5 

Total  247 

F, female; M, male. 

The main summary statistics for the 247 subjects in the dataset are provided in Table 11. These 

statistics were calculated after averaging over the various replicates for each subject. Calcium 

excretion and intake have similar ranges and main statistics (mean and median). The variability tends 

to be slightly larger for the calcium output. The mean and median positive values for the balance could 

be an indicator of a slight underestimating in the excretion measurements. This could be due to either 

the lack of measurements carried out for calcium sweat losses or a partial loss of faecal/urine material 

during the collection. This potential source of bias should be taken into consideration while 

interpreting results. 

 All studies and subjects—summary statistics of the main variables Table 11: 

Variables  Number 

of subjects 

Minimum Maximum Median Mean Standard 

deviation 

Calcium intake (mg/day) 247 557 1 502 789 853 200 

Calcium output (mg/day) 247 333 1 508 781 802 218 

Balance
(a)

 (mg/day) 247 –222 697 18 51 122 

Calcium intake (mg/kg per day) 247 6.04 21.96 11.40 11.84 2.97 

Calcium output (mg/kg per day) 247 3.90 21.97 10.86 11.11 3.08 

Balance
(a)

 (mg/kg per day) 247 –3.75 10.26 0.25 0.73 1.74 

Calcium intake (mg/kcal per day) 247 0.193 0.550 0.345 0.346 0.074 

Calcium output (mg/kcal per day) 247 0.106 0.550 0.321 0.325 0.078 

Balance
(a)

 (mg/kcal per day) 247 –0.100 0.214 0.007 0.022 0.051 

Body weight (kg) 247 45.9 133.2 71.5 73.8 15.2 

(a): Balance calculated as the difference between calcium intake and output. 

Boxplots of dietary calcium intake, excretion and balance expressed as mg/day are provided in Figures 

1–3. Again, for each individual, a single value was obtained averaging over the various replicates 

(varying from one to six measures depending on the study). The boxplots highlight the distribution 
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mean (diamond symbol), median (horizontal line) and quartiles (interior and extremes of the box), 

minimum and maximum in a range of 1.5-fold the 25
th
 and 75

th
 percentiles (extreme of the whiskers) 

and potential outliers defined as values above 1.5-fold the 25
th
 and 75

th
 percentile (dots). 

 

Figure 1:  Boxplot of dietary calcium intake by study 

 

Figure 2:  Boxplot of dietary calcium output by study 
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Figure 3:  Boxplot of calcium balance by study 

Eligibility criteria 

Eligibility criteria were established in order to select studies and subjects within studies to include in 

the analysis to get representative results. The criteria reflect the relevance of the studies and subjects 

for the objective of the assessment. 

It was deemed appropriate to exclude from the analysis: 

 people younger than 25 years (people aged 25 years and above are included); 

 studies with a range of values for the average calcium balance (intake minus excretion) at the 

individual level not including the null value. 

Younger adults were excluded from the sample because of the assumption that calcium is still being 

deposited in the bones after their growth has ceased; calcium accretion has been reported to continue 

until around 25 years of age in young men and women (Teegarden et al., 1995; Ohlsson et al., 2011; 

Darelid et al., 2012) or even later, depending on the bone site (Recker et al., 1992; Hui et al., 1999). 

Therefore, it was assumed that their calcium metabolism cannot be considered in a steady state, 

whereas this was deemed to be the case for older adults (the sample includes individuals up to the age 

of 81 years). 

It was also assumed that, in order to be representative of a reference population with normal calcium 

metabolism, the range of the average individual values for calcium balance in a study should include 

zero (ideally the distribution of the calcium balance should be concentrated around a zero value). 

Studies involving calcium supplementation (numbered 20 to 27 in Table 9) and excluded in the paper 

by Hunt and Johnson (2007) were considered in the analysis, provided that they fulfilled the previous 

criteria, despite the fact that no information was provided about the proportion of supplemental to total 
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calcium intake. It was assumed that calcium metabolism (i.e. efficiency of absorption) is unaffected by 

the source of intake. 

Both sexes were considered in order to evaluate if the relationship between intake and excretion is sex 

dependent. 

Selection by age led to the exclusion of 46 individuals (12 females and 34 males). Therefore, the 

remaining sample was composed of 201 subjects in total (132 females and 69 males). 

After the exclusion of people younger than 25 years, the distribution of the calcium balance (input 

minus output) in studies 3, 8, 21, 24 and 26 (Table 9) did not include the null value (see Figure 4). 

Studies 24 and 26 also have median and mean values that are quite far from zero (i.e. around 

200 mg/day), meaning that excretion was systematically below intake for the subjects involved. In 

both studies, supplement use was allowed. Consistent with the pre-established eligibility criteria, the 

five studies (31 subjects in total, of which 21 were female) were not included in the analysis on the 

assumption that they could not be considered representative of a population in a steady state for 

calcium metabolism. A total of 170 individuals (females and males) and 378 observations were 

considered for the final analysis. 

 

Figure 4:  Boxplot of calcium balance by study after exclusion of subjects below 25 years 

Summary statistics of the final sample are reported in Table 12. For all the variables and 

measurements, the mean is larger than the median, indicating a positive skew (i.e. the tendency of the 

distribution to deviate from the symmetry of a normal distribution, exhibiting with larger frequency 

values lower than the mean). The age range for the selected subjects is between 25 and 65 years for 

men and 25 and 81 years for women. 

 Subjects younger than 25 years and studies 3, 8, 21, 24 and 26 excluded—summary Table 12: 

statistics of the main variables 

Variables  Number of 

subjects 

Minimum Maximum Median Mean Standard 

deviation 

Calcium intake (mg/day) 170 557 1 502 778 836 193 

Calcium output (mg/day) 170 494 1 500 781 807 192 

Balance
(a)

 (mg/day) 170 –222 381 12 29 97 
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Variables  Number of 

subjects 

Minimum Maximum Median Mean Standard 

deviation 

Calcium intake (mg/kg per day) 170 6.04 21.96 10.92 11.43 2.82 

Calcium output (mg/kg per day) 170 5.15 19.72 10.58 11.05 2.79 

Balance
(a)

 (mg/kg per day) 170 –3.75 5.09 0.15 0.38 1.32 

Calcium intake (mg/kcal per day) 170 0.193 0.550 0.343 0.345 0.074 

Calcium output (mg/kcal per day) 170 0.167 0.550 0.323 0.333 0.076 

Balance
(a)

 (mg/kcal per day) 170 –0.100 0.127 0.005 0.011 0.039 

Body weight (kg) 170 45.9 133.2 72.9 74.8 15.0 

Age of women (years) 111 25 81 58 54 15 

Age of men (years) 59 25 65 30 32 9 

(a): Balance calculated as the difference between the calcium intake and output. 

Data quality 

Information about the setting of the studies and the methodology used to collect data (including 

laboratory techniques) can be found in the references provided by Hunt and Johnson (2007) for each 

individual study. A description of the studies with calcium supplementation is provided in Table 13. 

 Studies with calcium supplementation Table 13: 

Study  Study description Reference 

20 Copper intake: copper balance, absorption and indicators of status Milne (1990) 

21 Zinc intake: whole-body surface loss of zinc Canfield et al. (1982) 

22 Marginal zinc intakes: ethanol metabolism Milne et al. (1987) 

23 Aluminium, boron and magnesium intakes: boron, calcium and 

magnesium absorption and retention 

Hunt et al. (1997) 

24 Calcium and manganese intakes: menstrual cycle symptoms Penland and Johnson (1993) 

25 Boron and magnesium intakes: central nervous system activity Nielsen (2004) 

26 Magnesium intakes: magnesium status indicators Nielsen (1990) 

27 Magnesium intakes: neuronal function No publication 

One of the major strengths of the data is represented by the controlled setting in which individuals 

resided during the study period, which reduced the confounding factors. As reported in Hunt and 

Johnson (2007), “the subjects consumed only and all foods, beverages (including water), and vitamin, 

mineral, or other supplements provided by the center”. On the other hand, as the study requirements 

for compliance were quite demanding (e.g. people had to spend most of their time in a confined 

environment for some months, consume only and all food provided by the centre and perform 

prescribed physical activity), individuals were selected on a voluntary basis. This could have 

introduced a bias in the sample selection in terms, for instance, of dietary consumption habits and 

lifestyle before entering the study. Information on these aspects is missing in the dataset. 

Similar considerations apply to the subjects and/or observations on the same subject that were 

considered not eligible by Hunt and Johnson (2007), were excluded from the sample and not provided 

to EFSA. Although a rationale is provided by the authors to justify their choice, it was not possible to 

perform an independent evaluation of the opportunity to exclude subjects/observations and not even to 

assess the impact of the exclusion on the final estimates, as a list of these subjects/observations was 

not provided. Hunt and Johnson (2007) state that “data from a specific dietary period for an individual 

are excluded when intakes of magnesium, copper, iron, phosphorus or zinc fell below the respective 

EAR or exceeded the respective 99
th
 percentiles of usual intakes from the 1994 Continuing Survey of 

Food Intakes by Individuals… to avoid confounding the results with concurrent nutritional stress. To 

maximize the consistency in the data across individuals, balance periods < 6 or > 12 days in length 

were eliminated. To meet the design criteria suggested by the Food and Nutrition Board, the minimum 

dietary adaptation period was 12 days (median: 31 days, maximum: 109 days)”. 
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Methods of analysis 

Data processing 

From a preliminary analysis of the data, it appeared that seven subjects participated in two studies. 

Their mean calcium intake, excretion and balance were evaluated (Table 14) in order to decide which 

strategy to adopt to treat them (i.e. use as independent subjects, put their replicates together as coming 

from a single study, delete replicates related to one of the two studies). Eventually it was decided to 

treat these subjects as if they were independent observations, given the substantial differences in 

observations in the studies they took part in. No formal tests were performed to compare measures 

obtained on subjects included in pairs of studies because of the limited number of observations 

available. 

 Mean values of calcium intake, excretion and balance for subjects included in more than Table 14: 

one study 

Subject code Study Calcium intake (mg/day) Calcium output (mg/day) Calcium balance (mg/day) 

210 5 855 781 74 

210 7 883 871 12 

545 2 680 670 10 

545 4 872 892 –20 

661 1 1 143 997 146 

661 2 671 629 42 

705 4 884 836 48 

705 20 597 692 –95 

714 1 1 297 1 159 138 

714 2 887 746 140 

786 1 922 839 83 

786 2 693 627 67 

952 6 655 672 –17 

952 7 742 706 36 

Model formulation 

A mixed linear model (Brown and Prescott, 1999) was used to investigate the association between 

calcium excretion and dietary calcium intake. Sex and body weight were considered as potential 

covariates that might have an effect on the output. Therefore, they were included in the model, as well 

as the intake, and tested for significance. 

The same model was fitted to calcium intake and excretion, expressed as mg/day, mg/kg body weight 

per day and mg/kcal per day. 

As the studies included in the analysis exhibited a level of heterogeneity in terms of experimental 

setting conditions, a graphical exploratory analysis was performed to evaluate the opportunity to 

incorporate a random factor explaining the variability component owing to experimental design. 

Although regression lines over most of the studies overlapped, some of them showed deviations from 

the overall trend (Figure 5). Therefore, it was decided that this factor would be included as a random 

component in the model and that it would be evaluated formally if its contribution to the variance 

explanation is statistically significant. 
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Figure 5:  Regression of calcium output (mg/day) on dietary intake (mg/day) by studies 

The form of the model is given in equation [1]: 

 [1] 

where: 

Xij and Zij are design matrices for fixed and random factors, respectively, with j indicating repeated 

observations on individual i,  

 is the vector of fixed effects, 

 is the vector of random effects with , 

i is the random error term on individual i-th with  and . 

In addition, the following assumptions hold for the components of the model: 

  ; 

 G includes a covariance component to account for the correlation between subjects belonging 

to the same study; 

 R includes a covariance component to account for the correlation between repeated 

observations taken on the same subject at different times. 

The response variable is represented by calcium excretion (expressed as mg/day, mg/kg body weight 

per day and mg/kcal per day). The fixed components, tested for inclusion in the model, include dietary 

ijijijij ZXY  

 GN ,0

 RN ,0 0),cov( 

  XYE  RZGZYVar t )(
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calcium intake (expressed as mg/day, mg/kg body weight per day and mg/kcal per day), sex, age 

classes (between 25 and 50 years, and above 50 years) and weight (in kg). 

The random component of the model is represented by the study. Both the random factor and the error 

component include a covariance structure to account for the correlation between the pair of individuals 

participating in the same study, and the pair of observations taken on the same individual at different 

times. 

Different covariance structures were investigated. 

Various models have been tested to evaluate the following: 

 if the factors sex, age class and body weight have to be included among fixed effects; 

 if the inclusion of the random component (study) improves the fitting to the data (residual log-

likelihood, the Akaike (AIC) and Bayesian (BIC) information criteria were used to compare 

different models); 

 which structure of the covariance matrix has to be considered for the error component 

reflecting the correlation among replicates (unstructured (UN), compound symmetry (CS) and 

autocorrelation of the first order (AR(1)) were considered); 

 which structure of the covariance matrix has to be considered for the random component 

(study) reflecting the correlation among individuals in the same study (unstructured (UN) and 

compound symmetry (CS) were considered). 

The three possible structures of the error and random component are made explicit in the following: 

 

 

 

The most parsimonious structures in terms of the number of parameters to be estimated are the AR(1) 

and the CS. However, they require stronger assumptions to be made than the unstructured version of 

the matrix, where no assumptions are needed. The AR(1) assumes that the correlation between a pair 
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of replicated observations on the same subjects decreases with time. The compound symmetry 

structure requires the covariance between a pair of repeated observations/individuals in the same study 

being the same irrespective of the time of observation/study membership. 

Software 

The SAS software version 9.3 for Windows 7 was used to process and analyse data. The output of the 

procedure MIXED was further processed modifying the code of By (2005) for the estimation of 

prediction intervals. The detailed code is given in the internal report provided by EFSA’s Assessment 

and Methodological Support Unit (AMU). 

Results 

Calcium expressed as mg/day 

Among those models for which convergence was met, the indicators for the fitting process are 

reported in Table 15. 

 Model fit indicators Table 15: 

Model Random component Covariance structure –2 log AIC BIC 

1 Random study intercept Unstructured 4 516 4 560 4 516 

Replicates Unstructured 

2 Random study intercept Unstructured 4 560 4 566 4 560 

Replicates Compound symmetry 

3 Random study intercept Compound symmetry 4 560 4 568 4 560 

Replicates Compound symmetry 

4 Random study slope Unstructured 4 554 4 560 4 554 

Replicates Compound symmetry  

AIC, Akaike information criterion; BIC, Bayesian information criterion. 

Model selection was performed aiming for parsimonious (minimum parameters) well-fitting models 

(smallest values for fit indicators) for the response being measured. Therefore, model 4, which 

requests a lower number of parameters to be estimated, was chosen, although its goodness of fit was 

slightly lower than that of model 1. 

Based on the statistical analysis, age, sex and body weight were not relevant in explaining the 

variability of the calcium excretion once dietary intake is considered (results presented only for the 

selected model, see Table 16). Therefore, they were removed from the final model that contained 

ultimately only the dietary intake as an explanatory variable. 

 Fixed parameter estimates Table 16: 

Parameters Parameter 

estimates 

Standard 

error 

t-Student P value Lower bound 95 % 

confidence interval 

Upper bound 95 % 

confidence interval 

Intercept 156.28 50.84 3.07 0.0025 55.90 256.65 

Calcium input 0.75 0.05 14.53 < 0.0001 0.65 0.85 

Sex (F) –33.78 26.27 –1.29 0.2003 –85.65 18.09 

Age (2) –2.37 20.68 –0.11 0.9088 –43.20 38.46 

Weight 0.71 0.54 1.30 0.1945 –0.36 1.78 

F, female. 

All the components of the variance–covariance matrix were statistically significant, confirming the 

need to keep them in the model (Table 17).  
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 Variance/covariance estimates Table 17: 

Covariance parameters Subject Estimate Standard error Z value P value 

UN(1,1) Study 0.00 0.00 2.08 0.0189 

CS Subject 2 139 796.19 2.69 0.0072 

Residual  8 169 787.28 10.38 < 0.0001 

Diagnostic analysis—outlier detection and test for normality and homoscedasticity 

Prior to further statistical analysis, the data were culled for outliers and influential points defined by an 

Externally Studentised Residual greater than 3 in absolute value. The identified points are those that 

are not well fitted by the selected model. 

The diagnostic tests performed on the data (including graphical check for normality and 

homoscedasticity) are presented in Figure 6. 

 

Figure 6:  Diagnostic plot for assessing normality and homoscedasticity 

Six outliers were identified and eventually removed from the analysis (Table 18). For these replicated 

observations, the balance values did not correspond to the expected null balance and were quite 

extreme compared with the overall distribution (365 mg/day on a replicate or greater in absolute 

value). The final sample included one subject fewer than the original dataset (169 of which 110 

women and 59 men) and 372 observations in total (229 for females and 143 for males). 
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 Outliers and their characteristics Table 18: 

Study Subject Repl Sex Age 

(years) 

Weight 

(kg) 

Calcium intake 

(mg/day) 

Calcium output 

(mg/day) 

Calcium balance 

(mg/day) 

13 791 1 F 38 97.6 883 502 381 

14 523 1 M 27 79.2 1 267 1 632 –365 

18 529 4 M 25 64.3 968 526 442 

18 762 3 M 27 69.4 1 252 765 487 

20 779 2 M 25 72.7 587 1 023 –436 

27 279 2 F 57 67.9 742 1 175 –433 

F, female; M, male; Repl, repeated measurement. 

Model outcomes 

After removal of the outliers, the final fit of the model and estimation of the parameters was 

performed. Results are shown in Table 19. 

 Fixed parameter estimates Table 19: 

Parameter Parameter 

estimate 

Standard 

error 

t-Student P value Lower bound 95 % 

confidence interval 

Upper bound 95 % 

confidence interval 

Intercept 140.41 33.37 4.21 < 0.0001 74.53 206.29 

Calcium input 0.80 0.04 19.40 < 0.0001 0.72 0.89 

Again, all the components of the variance–covariance matrix were significant (as reported in Table 

20), confirming the need to keep them in the model. 

 Random component estimates Table 20: 

Covariance parameters Subject Estimate Standard error Z value P value 

UN(1,1) Study 0.00 0.00 2.22 0.0131 

CS CODE 1 517 618.85 2.45 0.0142 

Residual  6 599 643.95 10.25 < 0.0001 

The fit of the model is further improved as indicated by the goodness of fit indicators (Table 21) and 

the overall null model likelihood ratio test (Table 22). 

 Goodness of fit  Table 21: 

Model Random component Covariance structure –2 log AIC BIC 

1 Random study intercept Unstructured 4 414 4 420 4 414 

Replicates Compound symmetry 

AIC, Akaike information criterion; BIC, Bayesian information criterion. 

 Null model likelihood ratio test Table 22: 

Degrees of freedom Chi square P value 

2 52.10 < 0.0001 

Computation of the Average Requirement and Population Reference Intake 

The AR represents the level of intake that is adequate for half of the people in a population group. The 

purpose of this work is to estimate the AR for dietary calcium intake at which a null balance is 

expected at the population level. Therefore, it is straightforward to estimate it as the mean value 
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estimated by the model at the level where calcium intake and excretion are equal. A mean value of 

715 mg/day was estimated (Table 23). 

The PRI is defined as the level of intake that is adequate for 97–98 % of people in a population group. 

This parameter is naturally estimated via the upper bound of the prediction interval at the level 

corresponding to a null balance for the population mean. The 95 % marginal prediction interval is the 

estimated range of the individual values in a population provided by the model with 95 % confidence 

(blue dotted lines in Figure 7) at the population average random effects. Its upper bound represents the 

97.5
th
 percentile of the distribution of the individual predictions for each level of the predictor (dietary 

calcium intake). As indicated in Figure 7, this prediction interval upper bound at the level of calcium 

null balance for the population mean is equal to 904 mg/day. 

 Average Requirement for calcium Table 23: 

Estimated mean at null 

balance (mg/day) 

Lower bound of prediction interval 

of estimated mean at null balance 

(mg/day) 

Upper bound of prediction interval 

of estimated mean at null balance 

(mg/day) 

715 525 904 

 

Figure 7:  Individual prediction interval for the calcium excretion model 

It is worth noting that the estimated relationship between dietary calcium intake and excretion 

provides predicted values for the calcium output that are systematically above the intake when the 

intake is low and vice versa. This trend of the model implies a prediction of a negative balance when 

the calcium intake is low and a positive one when the calcium intake is higher. As regards the 

biological plausibility of this pattern, the NDA Panel concluded that, when intakes are very low or 

high, there are homeostatic adaptations (changes in absorption and in losses). Therefore, although the 

model predicts this, the data are not taken from extremely low or high calcium intakes, and 

consequently the adaptation cannot be incorporated into the model. 
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Sources of uncertainty and their potential impact on the final estimates 

The model used to set up the AR and PRI relies on some assumptions about the structure of the model 

in terms of the types of factors to be included (fixed and random), and the structure of the 

variance/covariance matrix. The structure of the variance/covariance model represents a way to 

account for the variability in the phenomenon. Nonetheless, they are also sources of uncertainty that 

can influence the final results. Indeed the structure of the model determines the size of the estimated 

interval estimates and consequently their upper bounds. Different choices could lead to different 

results. If the model had no random error, the prediction interval would simply account for the natural 

variability existing in the reference population among individuals. Similar considerations also apply to 

the factors included in the model (Table 24). 

 Sources of uncertainty and their effect on the outcome Table 24: 

Outcome Source of uncertainty Direction of the effect on the 

outcome 

Estimates of the dietary calcium 

intake and calcium excretion  

Lack of information about: 

 exclusion of some 

replicates/subjects from the 

dataset; 

 contribution of supplemental 

calcium to the total intake not 

given in calcium supplement 

studies. It is assumed that 

calcium from food and calcium 

supplements is metabolised 

similarly. 

It is difficult to evaluate the impact of 

this on the estimate of dietary calcium 

intake and excretion. Nonetheless, the 

explanations provided by the authors 

for exclusion indicate that these 

subjects had extreme intakes for 

minerals, raising doubts about their 

representativeness of a healthy adult 

population. It is difficult to predict 

what the impact of this exclusion 

could be on the AR and PRI, as 

extreme intakes are not necessarily 

outliers. 

If the assumption about a similar 

metabolism of food and supplemental 

calcium is incorrect, results may not 

be representative of dietary calcium 

intake. 

Representativeness of the healthy 

European adult population  

Individuals were volunteers and 

involved in studies with varying 

objectives, not studying calcium 

balance per se. In addition, the 

studies date back to the 1980s. 

The representativeness of the sample 

in terms of aspects that might impact 

on calcium metabolism other than 

dietary calcium intake was not 

assessed.  

The range of values for dietary 

calcium intake and excretion was 

considered by the NDA Panel as a 

good representation of the situation in 

the EU. No conclusions have been 

drawn with regard to the 

representativeness of dietary 

consumption pattern, age and sex 

composition. Owing to the lack of 

information, it is difficult to predict 

what the effect of these sources of 

uncertainty could be on the final 

estimates. 

Estimate of excretion No measurements were made of 

sweat losses in the metabolic studies. 

The type and amount of physical 

exercise considerably varied between 

individuals, and was not included in 

the information provided to EFSA. 

The calcium excretion used in the 

model is an underestimation. The 

degree of underestimation would 

depend on the activity undertaken by 

the subjects during the study period. 

However, Hunt and Johnson (2007) 

refer to unpublished data estimating 

calcium excretion via sources other 

than faeces and urine, and conclude 

that the collective level of excretion 

from these sources is negligible. 
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Outcome Source of uncertainty Direction of the effect on the 

outcome 

Estimate of AR and PRI Use of a point estimate resulting from 

the intercept of the line of null 

balance with the predicted mean and 

the upper bound of the prediction 

interval. 

The use of a point value makes the 

results sensitive to any change in the 

parameters estimate (intercept and 

slope) and their variability in the 

sample. Inclusion/exclusion of some 

replicates/units could, in principle, 

also lead to different estimates for AR 

and PRI. 

It is difficult to predict in which 

direction this uncertainty could affect 

the final results. However, it is true 

that, in a healthy population, it is 

expected that the relationship between 

dietary calcium intake and excretion 

should be close to 1. The closer the 

slope of the model is to 1, the larger 

the upper bound of the prediction 

interval becomes. In principle, the 

effect of the uncertainty could be a 

slight underestimation of the dietary 

intake corresponding to null balance. 

However, it is reassuring that the 

estimate of the slope is already not far 

from 1 and the fitness of the model is 

quite good. 

There is a need to accumulate more 

data of this kind in the future in order 

to make predictions at the individual 

level more robust. 
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ABBREVIATIONS 

Afssa Agence française de sécurité sanitaire des aliments (French Food Safety Agency) 

AI Adequate Intake 

AR Average Requirement 

BMC bone mineral content 

BMD bone mineral density 

CaBP calcium binding protein, calbindin 

CaSR calcium-sensing receptor 

CI confidence interval 

COMA Committee on Medical Aspects of Food Policy 

CV coefficient of variation 

D-A-CH Deutschland-Austria-Confoederatio Helvetica 

DH Department of Health 

DRV Dietary Reference Value  

DXA dual-energy X-ray absorptiometry 

EAR Estimated Average Requirement 

EU European Union 

F female 

FAO Food and Agriculture Organization 

IOM US Institute of Medicine of the National Academy of Sciences 

M male 

NNR Nordic Nutrition Recommendations 

OR odds ratio 

PBM peak bone mass 

PRI Population Reference Intake 

PTH parathyroid hormone 

RDA Recommended Dietary Allowance 

RNI Reference Nutrient Intake 

RR relative risk 

SCF Scientific Committee for Food 

SD standard deviation 

SE standard error 

UL Tolerable Upper Intake Level 

UNU United Nations University 

VDR vitamin D receptor 

WHO World Health Organization 
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